———— ПРИРОДНЫЕ ПРОЦЕССЫ И ДИНАМИКА ГЕОСИСТЕМ ——————

УЛК 551.432.7+556.55

КРАТЕРНЫЕ И КАЛЬДЕРНЫЕ ОЗЕРА ДАЛЬНЕГО ВОСТОКА РОССИИ: МОРФОЛОГИЯ КОТЛОВИН И ДИНАМИКА РАЗВИТИЯ

© 2022 г. Д. Н. Козлов^{а, *}, Е. В. Лебедева^{b, **}

^aИнститут морской геологии и геофизики ДВО РАН, Южно-Сахалинск, Россия

^bИнститут географии РАН, Москва, Россия

*e-mail: kozlovdn@bk.ru

**e-mail: Ekaterina.lebedeva@gmail.com

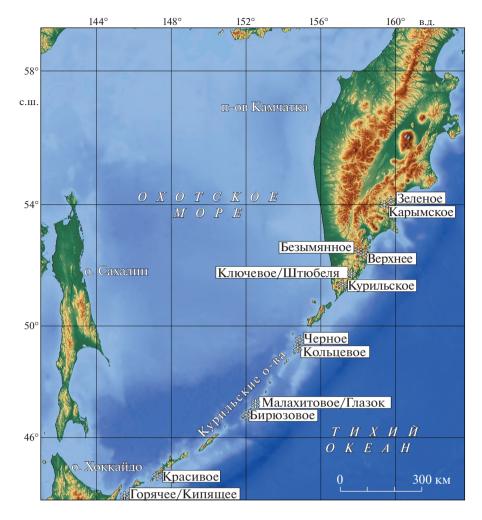
Поступила в редакцию 28.05.2021 г.

После доработки 11.09.2021 г.

Принята к публикации 15.12.2021 г.

По результатам комплекса полевых и камеральных работ получены и проанализированы данные по особенностям строения котловин и динамике развития 15 кратерных и кальдерных озер Курило-Камчатского региона. Рассчитаны их основные морфометрические характеристики. Установлено, что группа кальдерных озер менее однородна по всем морфометрическим показателям. Выявлено, что котловины водоемов одного генетического типа на Курильских островах и Камчатке схожи по формам и глубинам, но абсолютные высоты камчатских водоемов в целом больше курильских, впрочем, как нередко и размеры котловин. Изучение котловин 10 озер при помощи современной методики цифровой эхолокационной съемки позволило выявить специфические особенности морфологии котловин каждой из групп. Установлено, что котловины ряда кальдерных озер региона осложнены эксплозивными воронками, экструзивными или эффузивными куполами со следами гидротермальной деятельности; определены их параметры. Важной отличительной чертой многих вулканических озер является возможность стремительного изменения их основных характеристик (формы, объема, температуры, химического состава воды и др.) в широких пределах, что обусловлено особенностями функционирования близлежащих вулканических центров. По этим параметрам водоемы могут быть разделены на: 1) весьма динамичные молодые озера, расположенные в кратерах действующих вулканов или в активных кальдерах в непосредственной близости от них; 2) более стабильные, реликтовые водоемы в кальдерах спящих или потухших вулканов. Результаты повторных наблюдений позволили получить представление о примерных скоростях изменения уровней озер для интервалов в несколько десятилетий. Определена скорость роста подводного купола, обнаруженного авторами в 2016 г. в оз. Штюбеля (кальдера Ксудач, Камчатка).

Ключевые слова: вулканические озера, эксплозивная воронка, подводный купол, эхолокационная съемка, вулканическая деятельность, газогидротермы, Камчатка, Курильские острова


DOI: 10.31857/S2587556622020054

ВВЕДЕНИЕ

Из 8.45 млн озер Земли лишь около 1.2 тыс. (что составляет всего около 0.014%) относятся к вулканическим (Рянжин, Ульянова, 2000; Меуьеск, 1995). Некоторые из них весьма труднодоступны, а другие расположены рядом с населенными пунктами, при этом практически все они могут представлять серьезную угрозу близлежащей инфраструктуре из-за связи с вулканизмом. Эти особенности вулканических озер (ВО) привлекают к ним внимание исследователей (Larson, 1989; Manville, 2015; Pasternack, Varekamp, 1997 и др.); к настоящему времени озера многих вулканических регионов мира достаточно детально изучены (Brown et al., 1989; Casadevall et al., 1984; Delmelle and Bernard, 1994; Giggenbach, 1974; Morgan et al.,

2003; и др.), чего нельзя сказать о вулканических озерах России.

В нашей стране они наиболее широко распространены на Курильских островах и полуострове Камчатка (рис. 1). Эти территории вместе с северо-восточной оконечностью о. Хоккайдо образуют двойную островную дугу, длина которой составляет около 2000 км. Тихоокеанские островные дуги широко известны как области проявления современного вулканизма, молодой тектонической деятельности и высокой сейсмичности. На территории Курило-Камчатской дуги расположены все выделяемые (Chistenson et al., 2015) типы ВО: кратерные, кальдерные, мааровые, геотермальные, вулкано-тектонические, подпрудные и так называемые озера снеготаяния. ВО России изучены

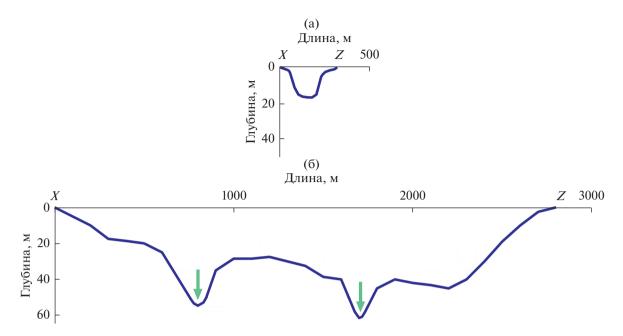


Рис. 1. Карта расположения рассматриваемых в статье кратерных и кальдерных озер Курильских о-вов и п-ова Камчатка (обозначены звездочкой).

слабо, что, в первую очередь, обусловлено их труднодоступностью, поэтому по многим из них существуют лишь краткие описания. Повторные или тем более регулярные наблюдения за режимом озер скорее исключение, а возможность увидеть проявление вулканической активности, как это случилось в 1996 г. на Карымском озере (Муравьев и др., 1997) — редкая удача даже по мировым меркам.

Сведения о ВО Дальнего Востока как в российских (Румянцев и др., 2017), так и в мировых (Volcanic ..., 2015) обзорах последних лет весьма скромны. В последнем случае, например, значимая информация дана лишь об уже упомянутом извержении в Карымском озере; еще 5 озер региона просто перечисляются, причем курильские озера имеют неверную географическую привязку. Некоторые сведения содержатся в базе данных WorldLake, созданной С.В. Рянжиным (2000). К сожалению, в связи с его уходом из жизни в течение нескольких последних лет к ней нет доступа.

К началу 2000-х годов была проведена съемка строения котловин лишь нескольких озер Камчатки – Курильского (Бондаренко, 1990), Зеленого на вулкане Мал. Семячик (Takano and Fazlullin, 1994), Карымского (Fazlullin et al., 2000), Ключевого и Штюбеля (Пилипенко и др., 2001), а также Кроноцкого (Аракельянц, Ткаченко, 2012). С 2005 г. сотрудниками лаборатории вулканологии и вулканоопасности Института морской геологии и геофизики (ИМГиГ) ДВО РАН совместно со специалистами из других институтов начали осуществляться работы по изучению котловин ВО региона. Были впервые обследованы котловины 8 курильских озер: Горячее и Кипящее (о. Кунашир), Красивое (о. Итуруп), Бирюзовое (о. Симушир), Малахитовое и Глазок (о. Кетой), Черное и Кольцевое (о. Онекотан), а также проведены повторные (с интервалом 25 лет) промеры двух озер (Ключевое и Штюбеля) на Камчатке (Козлов, 2015, 2016; Козлов, Лебедева, 2018; Козлов и др., 2017, 2019).

Рис. 2. Типичные профили котловин вулканических озер Курило-Камчатского региона: кратерных (оз. Глазок) (а) и кальдерных (оз. Горячее) (б). Стрелками показано положение взрывных воронок.

Цель данной статьи — установить особенности строения и динамики развития кратерных и кальдерных озер региона на основе обобщения имеющихся на настоящий момент разновременных данных по морфологии их котловин и характеристике вод.

МАТЕРИАЛЫ И МЕТОДЫ

Полевые исследования проводились при помощи методики цифровой эхолокационной съемки с синхронной спутниковой привязкой профилей. Для промеров использовались эхолоты фирмы Lowrance: LMS-527cDFiGPS и SeaCharter 320 DX с частотой излучателя 50–200 кГц и дискретностью съемки не менее 1 м, объем полученных профилей составлял от нескольких тысяч до нескольких десятков тысяч измерений. Обработка данных осуществлялась в программах Sonar Viewer и Surfer, при этом сведения о линейных параметрах и площадях водоемов были получены при помощи открытых ГИС SAS Planet и Google Earth.

Береговые процессы и террасы озерных систем кальдер Головнина (о. Кунашир), Ксудач и оз. Курильское (Камчатка) были изучены в результате дешифрирования спутниковых снимков высокого разрешения и последующих маршрутных наблюдений (Лебедева, 2017). По 7 озерам были проведены отбор проб воды и замеры ее температуры и рН. Наряду с этим были обобщены и проанализированы более ранние материалы, полученные другими исследователями.

РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЙ И ИХ ОБСУЖДЕНИЕ

По результатам съемки были составлены детальные батиметрические карты и профили котловин 10 вулканических озер (рис. 2—4). На основе этих данных рассчитаны основные морфометрические параметры — площади, объемы, средние глубины, коэффициенты емкости, показатель открытости, удельный водосбор. Их анализ и сравнение позволяют установить общие черты морфологического строения котловин. Собранные литературные материалы дали возможность расширить список анализируемых озер до 15. Сводные данные по морфологии и другим характеристикам 8 ВО Курильских островов и 7 Камчатки представлены в табл. 1.

Морфология озерных котловин

Вследствие особенностей и механизмов формирования вулканического рельефа, кратерные и кальдерные озера в значительной мере различаются по форме. Так как кратер — это чаше- или воронкообразное углубление на вершине или склоне вулканического конуса, через которое происходит истечение или выброс продуктов извержения, то кратерные озера региона имеют простую форму воронок с крутыми склонами и максимальными глубинами от 16 до 140 м (см. рис. 2а). Они относительно небольшие (0.033—0.2 км²), площади их водосборов также невелики (0.13—0.77 км²). Как правило, кратерные озера находятся на значительной высоте над уровнем мо-

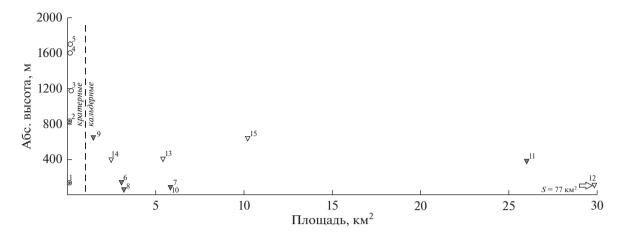
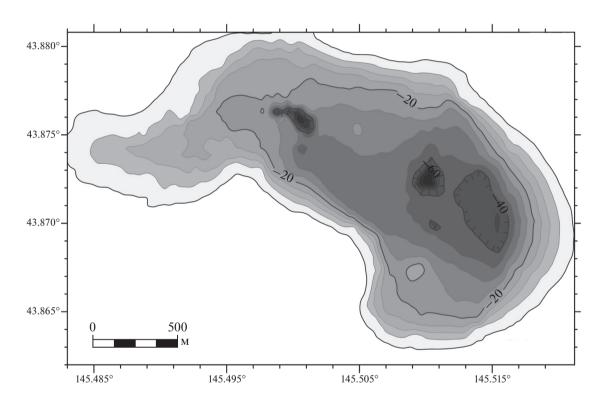



Рис. 3. Распределение абсолютных высот и площади кратерных и кальдерных озер региона. Номера см. в табл. 1.

Рис. 4. Батиметрическая схема оз. Горячее (кальдера Головнина, о. Кунашир) с воронками различных размеров и морфологии. Изобаты проведены через 5 м (съемка 2005 г.). Зубчатой линией ограничены взрывные воронки.

ря — до 1700 м — и являются бессточными. Их удельный водосбор (отношение площади водосбора к площади зеркала) составляет от 3.85 до 7. По перечисленным характеристикам они четко отделяются от кальдерных озер (см. рис. 3).

Кальдеры — обширные котловины взрывопровального происхождения с крутыми стенками и более или менее ровным дном, достигающие 10—20 км в поперечнике и нескольких сот метров в глубину. Площади кальдерных озер соответ-

ственно на порядок больше кратерных: самые крупные среди них озера Кольцевое на о. Онекотан (26 км²) и Курильское (77 км²) на п-ове Камчатка; последнее является крупнейшим кальдерным водоемом региона. Кальдерные озера расположены на более низких абсолютных высотах — до 650 м над ур. м., они преимущественно сточные и проточные. Впадающие в озера водотоки обычно относятся к 1—2 порядку, однако в сложных кальдерных комплексах (например, Ксудач),

Таблица 1. Характеристика изученных кратерных и кальдерных озер Курильских островов и полуострова Камчатка

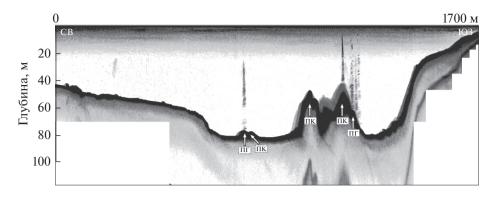
әәьоdЦ	1	I	лг	ЛГ	JIL	4 воронки	I	3 воронки	4 воронки	I	Конус влк. Креницына	ЛГ; экстру- зии	I	Экструзия	ЛГ; п-ов с кратером
Водообмен*	*	PC	PC	БС	PC	Ш	C	PC	C	PC	PC		Подз. сток.	C	ПР
, кидь в тиверии М г/т	1	I	40-50	4-17	20–40	ı	Прес-	4	ı	Прес-	Прес-	69.0	До 0.9	1	0.1-1
Hq	2.5–3.7	I	I	1.3	0.7-1.1	3	I	7.5	I	I	I	7.6	6.9	6.2	3.2–7
мдэгоддит эиригерм (ГТ)	ГТдо	Ė	ГТ до 100°С	Ė	E	100°C 100°C	I	ГТ до 40°С	I	I	Ė	ГТ до 40°С	ГТ до 65°С	rT 20- 44°C	ПТ до 70°С
Возраст (тыс. л)	-	I	0.4	I	I	~30	-09~ 80	I	I	~10	~8. ~	7.7— 8.4	6	0.1-	I
Открытости Ооказатель	0.008	0.001	0.005	0.008	0.001	0.11	0.23	0.1	0.03	0.2	0.18	0.4	0.09	0.075	0.2
Коэфф. емкости	0.25	0.4	0.47	I	I	0.45	0.5	0.39	0.48	0.26	0.39	9.0	0.64	0.4	0.7
Средняя глубина	4	16	37	5.8	2.8	28	25	34	53	29	4	189	09	33	49
Глубина макс., м	16	40	117— 140	ı	I	62.3	20	87	110	110	369	316	93	82	70
Ппррина макс., км	0.2	0.16	0.395	0.25	0.18	1.7	2.5	1.8	1.32	1.5	3.3	10	7	1.15	3.91
Длинз, км	0.33	0.2	0.645	0.28	0.22	8	8	2.7	1.55	4.5	6.5	12	4.15	4	4.08
Одгем, км ³	0.00122	0.0033	0.0104	ı	I	0.16	0.15	0.11	80.0	0.17	3.75	14.6	0.327	0.0835	0.5
Коэфф. извилистости берега	1.39	1.09	1.25	1.12	1.17	1.35	1.10	1.29	1.15	1.52	1.22	1.52	1.25	2.05	1.21
линии, км Длина береговой	6:0	0.55	1.98	68.0	0.72	8.48	9.35	8.2	5	13	22	47.5	10.3	11.5	13.7
Класс по площади	-2 Ма- ленькое	—2 Малень- кое	—1 Малое	—2 Малень- кое	—2 Малень- кое	1 Неболь- шое	2 Среднее	2 Среднее	1 Неболь- шое	1 Неболь- шое	2 Среднее				
Показатель площади	0.2	0.15	0.26	0.22	0.14	0.18	0.21	0.17	0.31	0.39	9.0	0.2	0.19	0.15	0.31
Удельный водосбор	4.84	6.5	3.85	4.4	7	5.46	4.65	5.94	3.19	2.56	1.67	5.09	5.35	6.55	3.23
Площадь водосбора, км ²	0.16	0.13	0.77	0.23	0.21	16.92	26.95	19	4.78	14.85	43.53	392	28.9	16.3	33
Плошаль зеркала, км ²	0.033	0.02	0.2	0.05	0.03	3.1	5.8	3.2	1.5	5.8	26	77	5.4	2.49	10.2
Абс. выс. зеркала, м	137	821	1176	1700	1598	128	82	50	648	72	385	103	411	412	630
итеницооХ	43°51′ N, 145°29′ E	47°20′ N, 152°28′ E	54°07′ N, 159°39′ E	54°27′ N, 158°09′ E	52°33′ N, 158°02′ E	43°52′ N, 145°30′ E	44°37′ N, 147°12′ E	46°54′ N, 151°57′ E	47°19′ N, 152°27′ E	49°34′ N, 154°50′ E	49°20′ N, 154°43′ E	51°27′ N, 157°05′ E	51°47′ N, 157°32′ E	51°49′ N, 157°32′ E	53°98′ N, 159°45′ E
рулкан	Голов- нина	Палласа	М. Се- мячик	Мутнов- ский	Горелый	Голов- нина	Итуруп Урбич	Завариц- кого	Кетой	. Пик Немо	Tao- Pycsip	Куриль- ское озеро	Ксудач	Ксудач	Акаде- мии наук
Местоположение	Куна- шир	Кетой	Кам- чатка	Кам- чатка	Кам- чатка	Куна- шир	Итуруп	Симу- шир	Кетой	Онеко- тан	Онеко- тан	Кам- чатка	Кам- чатка	Кам- чатка	Кам- чатка
пиТ	Кратер- ное	Кратер- ное	Кратер- ное	Кратер- ное	Кратер- ное	Каль- дерное	Каль- дерное	Каль- дерное	Каль- дерное	Каль- дерное	Каль- дерное	Каль- дерное	Каль- дерное	Каль- дерное	Каль- дерное
Название	Кипя- щее	Глазок	Зеленое	Верхнее	Безы- мянное	Горячее	Краси- вое	Бирю- зовое	Мала- хитовое	Черное	Кольце- вое	Куриль- ское	Ключе- вое	Штю- беля	Карым- ское
		-01	8		2	·C			6	_					

5

9

2009; Козлов, Лебедева, 2018; Козлов и др., 2019), сведения ГИС и литературные материалы: по озер Зеленое — Гавриленко, 2000; Тагап et al., 2021; Верхиее — Гавриленко, гля ставриленко, пр., 2009; Базылянное — Меlnikov et al., 2008; Курильское — Бондаренко, 1990; Карылское — Николаева и др., 2005; Fazlullin et al., 2000; датировки возраста озерных котловин взяты из работ: для озер Горячее и Кипящее — Разжигаева, Ганзей, 2006; Красивое — Козлов, 2016; Черное — Козлов, 2015; Кольцевое — Новейший ..., 2005; Ключевое и Штюбеля — Мелекесцев и др., 1995. *С — сточное; БС — бессточное; ПР — проточное; ** сточное, антропогенный сток; — нет данных; ЛГ — озера, изученные по литературным материалам и сведениям ГИС. При составлении таблицы использованы авторские данные, частично опубликованные ранее (Козлов, 2015, 2016; Козлов, Белоусов, 2007; Козлов и др., 2017; Козлов, Жарков,

13


14

15

 \equiv

6

10

Рис. 5. Профиль эхолотной съемки 2016 г. через котловину оз. Штюбеля (кальдера Ксудач, Камчатка). Π К — подводный конус, Π Г — подводные гидротермы (Козлов и др., 2019).

где разновозрастные кальдеры смещены друг относительно друга, отдельные внутрикальдерные водотоки могут быть отнесены к 3 порядку, а их общее количество — превышать десяток.

Показатель удельного водосбора этого типа озер колеблется в более широких пределах — от 1.67 до 6.55, что во многом зависит от крутизны внутренних склонов кальдеры. Необходимо отметить, что в целом и большинство других рассчитанных морфометрических коэффициентов (извилистости береговой линии, емкости, открытости — см. табл. 1) для кальдерных озер имеет по крайней мере в 2 раза больший диапазон значений, что свидетельствует о более сложной структуре этой группы водоемов.

Региональное сравнение параметров озерных котловин различного типа показало, что котловины водоемов одного генетического типа на Курильских островах и Камчатке схожи по формам и глубинам, но абсолютные высоты камчатских водоемов в целом больше курильских, впрочем, как нередко и размеры котловин (см. табл. 1). Площади водосборов кратерных озер регионов соотносятся как 0.13—0.16 и 0.21—0.77 км² соответственно, а кальдерных — как 4.78—43.59 и 16.3—392 км².

Анализ построенных детальных батиметрических карт позволил заключить, что котловины кальдерных озер региона характеризуются не просто обширным плоским днищем, как это считалось ранее, а часто осложнены вулканическими структурами, среди которых выделяют экструзивные и эффузивные купола и взрывные воронки различных размеров (см. рис. 2б). В котловине оз. Горячего (о. Кунашир), например, нами было зафиксировано четыре эксплозивных воронки до 200-250 м в поперечнике с глубинами до 45-60 м (см. рис. 2, 4). В оз. Бирюзовом (о. Симушир) обнаружены три подобных воронки с глубинами 42-87 м, формирующие так называемый "эксплозивный ров" (Козлов, Белоусов, 2007; Козлов, Жарков, 2009). Ранее (Горшков, 1967; Мархинин,

1960) здесь были описаны только два купола (экструзивный и эффузивный). При съемке обширного Курильского озера (Бондаренко, 1990) был обнаружен протяженный уступ, отделяющий мелководную (до 200 м) северную часть озера от глубоководной (до 316 м) южной. Наши исследования также показали, что в приустьевых частях большинства впадающих в озера водотоков формируются обширные подводные конусы выноса, сложенные снесенным с бортов кальдеры пирокластическим материалом.

Особенности состава вод

Источниками воды и растворенных минеральных компонентов в озерах являются не только атмосферные осадки и поверхностный сток, но и газогидротермальные выходы, активность которых зависит от процесса дегазации ближайшего магматического очага. Газогидротермы наблюдаются во всех изученных кратерных озерах региона; во многих температуры (T) могут достигать 90—100°С, поэтому и T озерных вод может быть достаточно высокой. Воды кратерных озер кислые (pH от 0.7—1.1 до 2.5—3.7), минерализация — от 4 до 50 г/л (см. табл. 1).

Кальдерные озера характеризует гораздо большее разнообразие химического состава вод: они могут быть наполнены как слабоминерализованной нейтральной — практически пресной водой, так и высокоминерализованной кислой, а иногда и щелочной: рН воды колеблется от 3 до 7—7.6. Минерализация воды в целом гораздо ниже, чем в кратерных озерах, — от 0.1 до 4 г/л (см. табл. 1).

Газогидротермальные выходы наблюдаются либо в самой озерной котловине, либо в непосредственной близости от нее. Мощные газогидротермы связаны и с описанными выше воронками и куполами, осложняющими днища кальдер и котловины озер (рис. 5), их периодическую активизацию с эффектом "вскипания" поверхности подтверждают и свидетельства очевидцев (оз. Го-

рячее, о. Кунашир). Однако в ряде кальдерных озер (напр., озера Черное и Красивое) газогидротермы не обнаружены (см. табл. 1).

Распределение газогидротерм нередко приводит к тому, что даже сообщающиеся озера – расположенные в пределах одной кальдеры — могут значительно различаться по составу вод. Так. воды оз. Ключевого (кальдера Ксудач) – щелочные с минерализацией около 180 мг/л, их состав постоянен от поверхности до дна. В оз. Штюбеля термальные воды, обогащенные сульфатами с минерализацией до 0.4-1 г/л, разгружаются в придонном слое, в результате чего прослеживается вертикальная зональность их химического состава (см. табл. 1). Исследования озер о. Кунашир (Жарков, 2014) показывают, что состав и кислотность вод иногда значительно различаются даже в пределах одного водоема, так как кислые и щелочные термальные источники могут там выходить на незначительном расстоянии друг от друга.

Динамика состава и уровня озерных вод

В зависимости от активности газогидротерм и объема поступления пресных атмосферных или поверхностных вод — состав воды в озерах может значительно изменяться. Наблюдения показывают, что при активизации вулкана объем поступающих термальных вод резко возрастает, соответственно увеличивается уровень озер, растут температура и минерализация (Гавриленко, 2000). Например, до извержения 1996 г. вода в оз. Карымском (кальдера Академии наук, Камчатка) была пресной (рН 7.1) низкоминерализованной (110-130 мг/л), имела гидрокарбонатно-натриевый состав, в озере водилась рыба. Сразу после извержения рН снизился до 3.2, минерализация возросла до 1 г/л, резко увеличилась доля соединений хлора и серы (Николаева и др., 2005). В результате последующего разбавления озерных вод атмосферными осадками и водами впадающих в него ручьев к 2004 г. его минерализация опять понизилась, а реакция стала слабокислой (рН 5.5-6.0). Аналогичные изменения во время вулканических событий претерпевают и воды иных кальдерных и кратерных озер региона, однако при возрастании температур более 100°C небольшие озера могут испаряться и исчезать, а при активной фазе извержения в кратерах могут формироваться лавовые озера (Толбачинский дол, 2013 г.). Весьма динамичным является Безымянное озеро в центральном кратере влк. Горелого: после извержения 1985-1986 гг. его уровень постоянно повышался, к 1990 г. диаметр зеркала составлял около 70 м. За период 1992—2008 гг. уровень озера увеличился на 50 м, а площадь поверхности в 10 раз (Melnikov et al., 2008). После извержения 2010 г. озеро высохло, но, в настоящее время оно опять появилось.

Газогидротермальная активность может значительно меняться со временем и вне прямой зависимости от вулканических извержений. Например, в кальдерном оз. Бирюзовом (о. Симушир) термальные источники, описанные в 1940-1950 гг. (Зеленов, Канакина, 1962) к 2007 г. сохранились лишь в его ЮЗ части. Активные изменения характеристик кратерных озер зафиксированы и на вулкане Мутновском. Так, оз. Верхнее в юго-западном кратере в 1954 г. достигало размера 280×250 м при температуре воды 42-46°C и минерализации 4.2 г/л (Таран и др., 1991). Постепенно оно исчезло, его место занял ледник. С 2000 по 2003 гг. котловина опять была заполнена высокоминерализованными водами (до ~17 г/л) с рН 1.3 и T = 40-50°C (Гавриленко, Гавриленко, 2003; Гавриленко и др., 2009). В августе 2021 г. на краю ледника нами опять был отмечен небольшой незамерзающий водоем (очевидно с высокоминерализованной водой). Нижнее озеро размером около 200 × 250 м существовало в CB кратере до середины 1950-х годов. Температура его воды не превышала 10°C, она имела кислую реакцию и минерализацию 2.3 г/л (Маренина, 1956). 17.08.2021 г. в связи с обвалом на северной стенке кратера там опять возникло подпрудное озеро (рис. 6): 19.08 нами наблюдался активный дренаж через плотину; по сообщению Д. Мельникова, 20.08 площадь озера составляла около 4650 м^2 .

Изменения морфологии котловин

У кратерных и кальдерных озер быстро меняется не только состав воды, но и морфология их котловин. Форма озер и их количество в кальдере зависят от характера рельефа и уровня воды, который непостоянен, поэтому там может существовать то единое озеро, то серия небольших сообщающихся или нет водоемов (рис. 7). Так, в кальдере Ксудач (Камчатка) 8.5-8.7 тыс. л. н. было единое озеро, глубина которого могла превышать 200 м, о чем свидетельствуют находки озерных отложений (Мелекесцев и др., 1995). При падении уровня и в результате роста молодого конуса Штюбеля в ее центре около 1600 л. н. (Пилипенко и др., 2001) единое озеро распалось на лва самостоятельных водоема - Ключевое и Штюбеля. При извержении конуса Штюбеля в 1907 г. произошло перегораживание плотиной р. Теплой, дренирующей озера, и уровень озер повысился на 15 м. В 1910 г. в кальдере был единый водоем (Келлъ, 1928), который к 1937 г. опять распался на два (Пийп, 1941). О поэтапном снижении уровня на протяжении 1910-1937 гг. свидетельствуют сформировавшиеся по берегам три абразионные террасы (Лебедева, 2017б).

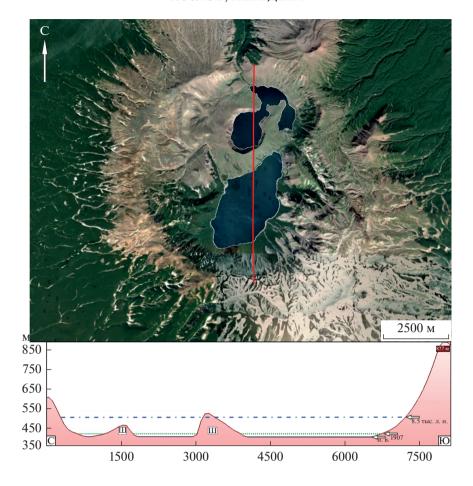

Следы значительных (около 100 м и более) перепадов уровня воды в виде озерных террас наблюдались нами и в кальдерных озерах Куриль-

Рис. 6. Обвал внутренней стенки кратера вулкана Мутновский 17.08.2021 г. и сформировавшееся подпрудное озеро (фото Е.В. Лебедевой, 19.08.2021 г.). Пунктиром ограничено тело плотины, стрелкой — направление смещения материала со склона.

ское и Бирюзовое. Так, в первом случае прослеживается 8 уровней голоценовых абразионных террас с отметками до 140 м над урезом; при этом

наиболее хорошо выражены террасы высотой около 87—95 и 10—12 м. Формирование последней, видимо, связано с подпруживанием стока дрениру-

Рис. 7. Колебание уровня озер в кальдере Ксудач. Ш - конус Штюбеля, н.в. - положение уровня водоемов в настоящее время.

ющей кальдеру р. Озерной около 1.6 тыс. л. н. (Ponomareva et al., 2006), в результате обвала части активно растущей экструзии Дикий Гребень. Плотина образовалась в 3—4 км ниже истока реки, ее высота составляла не менее 20 м. Следы высокого стояния уровня Курильского озера позволяют также не исключать возможность существования разных направлений стока на голоценовых этапах развития этого водоема.

Выполненное нами в 2016 г. повторное эхолотирование оз. Штюбеля (Козлов и др., 2019) показало, что за 25 лет, прошедших с момента промеров КамчатНИРО в 1991 г. (Пилипенко и др., 2001), в его кратерной части вырос экструзивный купол размером 335×250 м и объемом 773750 м³. Относительная высота его западной вершины — 35 м, восточной — 40 м (см. рис. 5). В оз. Карымском туфовый конус с кратером диаметром около 600 м и глубиной до 60 м сформировался еще быстрее — непосредственно во время извержения в январе 1996 г. (Муравьев и др., 1997).

Во время роста вулканических структур происходит не только изменение морфологии дна озера: единый водоем может распадаться на не-

сколько, что описано выше; в других случаях озера приобретают специфическую форму — кольца (оз. Кольцевое, о. Онекотан — рис. 8), полумесяца или подковы (оз. Горячее, о. Кунашир), занимая наиболее пониженные участки. При этом молодые озерные отложения могут быть подняты над уровнем озера и деформированы (как, например, в кальдере Головнина), а внутрикальдерная речная сеть вынуждена перестраиваться согласно изменениям уклонов поверхности (Лебедева, 2017а).

В случае, если кальдерные озера расположены поблизости от моря, то нередко происходит разрушение их бортов в результате абразии, они заполняются морскими водами и превращаются в морские заливы. Таковы залив Львиная Пасть (о. Итуруп), бухты Кратерная (о. Янкича — рис. 9), Броутона (о. Симушир) и мн. др.

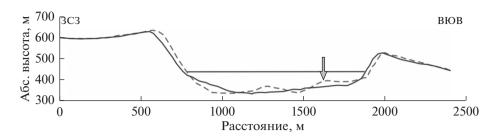

Изменение характера береговой линии озер происходит и в результате вулканической деятельности, которая сопровождается излиянием лавы, вертикальными подвижками отдельных участков, выбросами вулканогенного материала. Так, при извержении 1907 г., произошло разрушение северной стенки конуса Штюбеля, и прак-

Рис. 8. Озеро Кольцевое (фото А.В. Дегтерева, 2015 г.).

Рис. 9. Бухта Кратерная, о. Янкича (фото В.О. Шубина, 2000 г.). Видны экструзивные купола и фрагмент разрушенного абразионными процессами борта кальдеры.

Рис. 10. Сравнение профилей через котловину кратерной части оз. Штюбеля на основе гипсобатиметрических моделей по данным 1980–90-х (сплошная линия) и 2016—2018 (пунктир) годов. Стрелка показывает участок роста нового подводного купола (Kharchenko et al., 2020).

тически одномоментно площадь одноименного озера увеличилась вдвое (Пилипенко и др., 2001). В северной части оз. Карымского при подводном извержении 1996 г. возник новый полуостров (Муравьев и др., 1997).

Гипсобатиметрическая модель, составленная С.В. Харченко по данным нашей батиметрической съемки 2016 г. и на основе ресурса Arctic-DEM (Kharchenko et al., 2020), впервые позволила оценить строение сложного кальдерного комплекса Ксудач в целом, учитывая и подводный рельеф участков, занятых озерами. Ее сравнение с аналогичной моделью, полученной на основе топокарты, составленной В.Н. Двигало (ИВиС) по аэрофотоснимкам 1980-х годов, и батиметрической карты 1991 г., полученной в результате промеров сотрудниками КамчатНИРО глубин озер аналоговым эхолотом, позволило определить участки выраженных локальных изменений морфологии кальдеры. Наиболее интенсивными процессами рельефообразования последних десятилетий оказались не только рост подводного вулканического купола, но также активное изменение берегов озер и вынос пемзового материала реками в их котловины (рис. 10).

Поступлению в озерные котловины значительных объемов обломочного материала способствуют также гравитационные смещения на склонах. Результаты фотограмметрического анализа разновременных снимков кратера Троицкого на вулкане Мал. Семячик (Камчатка) показали, что морфология внутренних стенок кратера постоянно меняется в результате обваливания и осыпания, а общий объем материала, поступившего в расположенное там оз. Зеленое с 1968 по 2012 г., достиг 1.5 млн м³. При этом уровень озера поднялся с отметки 1139 до 1176 м над ур. м., а прирост его объема составил 9 млн м³, из которых 17% — это обломочный материал, поступивший в котловину (Свирид и др., 2013). Велика активность гравитационных процессов и на бортах других кратерных озер (см. рис. 6).

Некоторые количественные параметры изменения уровня и морфологии озер

Удаленность ВО затрудняет организацию там регулярных наблюдений и получение количественных параметров их динамики. Проведенные авторами промеры вкупе с собранными литературными данными позволяют рассчитать лишь некоторые из показателей. Например, в кальдерном оз. Бирюзовым (о. Симушир) зафиксированы значительные колебания уровня воды: после извержения 1957 г. он понижался на 6-8 м (Корсунская, 1958), а к 1959 г. – еще на 2 м (Мархинин, 1960), а затем к 2007 г. повысился почти на 12 м (Козлов, Жарков, 2009). Таким образом, скорость снижения его уровня составила порядка 0.5 м/год, а затем на протяжении 1959-2007 г. скорость поднятия в среднем была около 0.26 м в год. Опираясь на фотоматериалы и описания (Келлъ, 1928; Пийп, 1941), можно оценить среднюю скорость понижения уровня озер Ключевое и Штюбеля на протяжении 1910-1937 гг. за счет трехэтапного разрушения плотины, перегородившей дренирующую их реку, в 0.5–0.6 м/год. При этом скорость роста подводных конусов в кратерной части оз. Штюбеля за 25-летний интервал с учетом возможной неточности при съемке КамчатНИРО оценивается нами как 1-1.6 м/год.

В кратерных озерах Камчатки изменения их уровня могут происходить с еще большими скоростями, что обусловлено не только их меньшими объемами, но и значительной динамичностью. Так, данные (Melnikov et al., 2008) позволяют заключить, что рост уровня оз. Безымянного (влк. Горелый, Камчатка) превышал 3 м/год в течение 16 лет. Повышение уровня оз. Зеленого, по расчетам, опирающимся на материалы (Свирид и др., 2013; Тагап et al., 2021), в среднем достигало 1 м/год за 70 лет наблюдений, но на отдельных этапах (1950—1971) скорость подъема возрастала до 1.4 м/год, а на других (1986—2002) его уровень был практически стабильным.

ЗАКЛЮЧЕНИЕ

Вулканические озера Курильских островов и п-ова Камчатки располагаются в пределах древних и современных вулканических построек, активность которых оказывает значительное влияние на морфологию их котловин и побережий, а также на гидрологический режим и физико-химические параметры их вод. В свою очередь, состояние вулканических озер и интенсивность изменения их параметров позволяет судить о характере вулканических процессов.

Анализ данных показал, что кратерные и кальдерные озера региона различаются по основным морфологическим показателям. При этом котловины одного генетического типа на Курильских островах и Камчатке схожи по формам и глубинам, но размеры котловин камчатских водоемов в обоих случаях в среднем больше курильских.

Кратерные озера региона всегда более динамичны, и их воды имеют более высокую температуру и минерализацию. Как правило, они приурочены к конусам действующих вулканов, но иногда располагаются и внутри более древних кальдер, свидетельствуя об их продолжающейся активности. В таких случаях кальдерные озера, расположенные рядом с кратерными, по характеру минерализации и активности изменения уровня вод нередко близки к ним, что не противоречит наблюдениям и в других регионах мира (Volсапіс ..., 2015). Поэтому мы можем разделить ВО региона на два типа по динамике изменения их морфологических и гидрохимических характеристик: 1) динамичные молодые озера, расположенные в кратерах действующих вулканов или в активных кальдерах в непосредственной близости от них, осложненные эксплозивными воронками и экструзивными куполами с активными гидротермальными проявлениями; 2) более стабильные, реликтовые водоемы в кальдерах спящих или потухших вулканов, как правило, без интенсивных гидротермальных выходов и воронок

Колебания уровня озер первой группы в исторический период на отдельных этапах могли достигать первых метров в год, близкие скорости роста имеют и активные вулканические структуры в их пределах. Разновысотные озерные террасы на бортах кальдер свидетельствуют о том, что колебания уровней водоемов данного типа на протяжении голоцена могли достигать первых сотен метров.

ФИНАНСИРОВАНИЕ

Анализ материалов выполнен в рамках тем государственных заданий ИМГиГ ДВО РАН и ИГ РАН (AAAA-A19-119021990091-4, FMGE-2019-0005).

FUNDING

The analysis of the materials was carried out within the framework of the state-ordered research themes of the IMGiG FEB RAS and IG RAS (AAAA-A19-119021990091-4, FMGE-2019-0005).

СПИСОК ЛИТЕРАТУРЫ

- Аракельянц А.Д., Ткаченко О.В. Гидрологические характеристики Кроноцкого озера (Камчатка) в начале XXI века // Вестн. Моск. ун-та. Сер. 5: Геогр. 2012. № 6. С. 77—83.
- *Бондаренко В.И.* Сейсмоакустические исследования оз. Курильского // Вулканология и сейсмология. 1990. № 4. С. 92–111.
- *Брайцева О.А., Краевая Т.С., Шеймович В.С.* О происхождении Курильского озера и пемз этого района // Вопр. географии Камчатки. 1965. Вып. 3. С. 49—57.
- Гавриленко Г.М. Гидрологическая модель кратерного озера вулкана Малый Семячик (Камчатка) // Вулканология и сейсмология. 2000. № 6. С. 1–11.
- Гавриленко Г.М., Гавриленко П.Г. Временные кратерные озера вулкана Мутновский (Камчатка): причины их образования и исчезновения // Вестн. КРАУНЦ. Науки о Земле. 2003. № 2. С. 118—121.
- Гавриленко Г.М., Мельников Д.В., Овсяников А.А. Современное состояние термального озера в активном кратере вулкана Горелый (Камчатка): Материалы конф., посвящ. 100-летию экспед. Рябушинского. Петропавловск-Камчатский: ИВиС ДВО РАН, 2009. С. 86–95.
- *Горшков Г.С.* Кальдера Заварицкого // Бюлл. вулканол. станции. 1967. № 30. С. 31—49.
- Жарков Р.В. Типы термальных вод Южных Курил и севера Сахалина и их влияние на ландшафты: Автореф. дисс. ... канд. геогр. наук. Хабаровск: ИВП РАН, 2008. 26 с.
- Жарков Р.В. Термальные источники Южных Курильских островов. Владивосток: Дальнаука, 2014. 378 с.
- Зеленов К.К., Канакина М.А. Бирюзовое озеро (кальдера Заварицкого) и изменение химизма его вод в результате извержения 1957 г. // Бюл. вулканол. станции. 1962. № 32. С. 33—44.
- Келль Н.Г. Карта вулканов Камчатки / Объяснит. текст с табл., чертежами, снимками и карта (на 2-х л.). М-б: 750 000. Л.: Изд-во РГО, 1928. 75 с.
- Козлов Д.Н. Кратерные озера Курильских островов. Южно-Сахалинск: Сахалинск. областн. краеведч. музей, ИМГиГ ДВО РАН, 2015. 112 с.
- *Козлов Д.Н.* Морфология кратерного озера Красивое // Вестн. КРАУНЦ. Науки о земле. 2016. Т. 31. № 3. С. 65—71.
- Козлов Д.Н., Белоусов А.Б. Современные методы исследований внутрикальдерных озер активных вулканов (на примере вулкана Головнина, о. Кунашир, Курильские о-ва): Материалы XIII совещ. географов Сибири и Дальнего Востока. Иркутск: ИГ СО РАН, 2007. Т. 1. С. 142—144.
- Козлов Д.Н., Дегтерев А.В., Рыбин А.В., Коротеев И.Г., Климанцов И.М., Чаплыгин О.В., Чаплыгин И.В. Первые результаты батиметрической съемки вул-

- канического озера Кольцевое (о. Онекотан, Северные Курильские острова) // Вестн. КРАУНЦ. Науки о земле. 2017. Т. 33. № 1. С. 89–95.
- Козлов Д.Н., Жарков Р.В. Новые данные по морфологии внутрикальдерных озер островов Кунашир и Симушир // Вестн. КРАУНЦ. Науки о земле. 2009. Т. 14. № 2. С. 159—164.
- Козлов Д.Н., Лебедева Е.В. Вулканические озера кальдеры Ксудач (Камчатка): строение и современные береговые процессы // XXXVI Пленум ГК РАН. Барнаул: АГУ, 2018. С. 186—192.
- Козлов Д.Н., Лебедева Е.В., Жарков Р.В. Строение котловин вулканических озер Ключевое и Штюбеля (кальдера Ксудач, Камчатка) // География и природные ресурсы. 2019. № 4. С. 153—164.
- Корсунская Г.В. Вулканы острова Симушир // Бюл. вулканол. станции. 1958. № 24. С. 61-65.
- Лебедева Е.В. Кальдера вулкана Ксудач (Камчатка) современные процессы рельефообразования и особенности строения долинной сети // Геоморфология. 2017. № 3. С. 60—75.
- Лебедева Е.В. Озера кальдерного комплекса Ксудач (Камчатка): береговые процессы и колебание уровня // Геоморфология. 2017. № 4. С. 35—49.
- Маренина Т.Ю. Геолого-петрографический очерк Мутновского вулкана / Тр. лаб. вулканологии. 1956. Вып. 12. С. 3—52.
- *Мархинин Е.К.* Извержение вулкана Заварицкого на острове Симушир осенью 1957 г. // Бюл. вулканол. станции. 1960. № 29. С. 7-15.
- Мелекесцев И.В., Брайцева О.А., Пономарева В.В., Сулержицкий Л.Д. Катастрофические кальдерообразующие извержения вулкана Ксудач в голоцене // Вулканология и сейсмология. 1995. № 4—5. С. 28—53.
- Муравьев Я.Д., Федотов С.А., Будников В.А., Озеров А.Ю., Магуськин М.А., Двигало В.Н., Андреев В.И., Иванов В.В., Карташева Л.А., Марков И.А. Вулканическая деятельность в Карымском центре в 1996 г.: вершинное извержение Карымского вулкана и фреатомагматическое извержение в кальдере Академии Наук // Вулканология и сейсмология. 1997. № 5. С. 38—71.
- Николаева А.Г., Карпов Г.А., Лупикина Е.Г., Ушаков С.В. Эволюция солевого состава воды термальных источников и Карымского озера после извержения 1996 г.: Материалы конф., посвящ. Дню вулканолога. Петропавловск-Камчатский: ИВиС ДВО РАН, 2005. С. 37—47.
- Новейший и современный вулканизм на территории России / отв. ред. Н.П. Лаверов. М.: Наука, 2005. 604 с.
- *Пийп Б.И.* О силе извержения вулкана Ксудач в марте 1907 г. // Бюл. вулканол. станции. 1941. № 10. С. 23—29.
- Пилипенко Г.Ф., Разина А.А., Фазлуллин С.М. Гидротермы кальдеры вулкана Ксудач // Вулканология и сейсмология. 2001. № 6. С. 43—57.
- Разжигаева Н.Г., Ганзей Л.А. Обстановки осадконакопления островных территорий в плейстоцен-голоцене. Владивосток: Дальнаука, 2006. 247 с.

- Румянцев В.А., Драбкова В.Г., Измайлова А.В. Озера азиатской части России. СПб.: Свое изд-во, 2017. 480 с.
- Рянжин С.В., Ульянова Т.Ю. Географическая информационная система "Озера мира" GIS WORD-LAKE // ДАН. 2000. Т. 370. № 4. С. 542—545.
- Свирид И.Ю., Шевченко А.В., Двигало В.Н. Исследование активности вулкана Малый Семячик (Камчатка) по морфодинамическим параметрам кратера Троицкого // Вестн. КРАУНЦ. Науки о Земле. 2013. Т. 22. № 2. С. 129—143.
- Таран Ю.А., Вакин Е.А., Пилипенко Г.Ф., Рожков А.М. Геохимические исследования в кратере вулкана Мутновский (Камчатка) // Вулканология и сейсмология. 1991. № 5. С. 37—55.
- Brown G., Rymer H., Dowden J., Kapadia P., Stevenson D., Barquero J., Morales L.D. Energy budget analysis for Poas volcanic lake: implications for predicting volcanic activity // Nature. 1989. Vol. 339. P. 470–472.
- Casadevall T.J., de la Cruz-Reyna S., Rose W.I. Jr., Bagley S., Finnegan D.L., Zoller W.H. Crater lake and post-eruption hydrothermal activity, El Chichon volcano, Mexico // J. of Volcanol. and Geotherm. Res. 1984. Vol. 23. P. 169–191.
- Chistenson B., Németh K., Rouwet D., Tassi F., Vandemeulebrouk J., Varekamp J. Volcanic lakes / Volcanic lakes. Berlin: Springer, 2015. P. 1–20.
- Delmelle P., Bernard A. Geochemistry, mineralogy and chemical modeling of the acid volcanic lake of Kawahidjen volcano, Indonesia // Geochimica et Cosmochimica Acta. 1994. Vol. 58. P. 2445–2460.
- Fazlullin S.M., Ushakov S.V., Shuvalov R.A., Aoki M., Nikolaeva A.G., Lupikina E.G. The 1996 subaqueous eruption at Academii Nauk volcano (Kamchatka) and its effects on Karymsky lake // J. Volcanol. and Geotherm. Res. 2000. Vol. 97. № 1–4. P. 181–193.
- Gavrilenko G.M. Poor-known data for the Mutnovsky volcano crater lakes, Kamchatka // Abstracts. Chapman Conf.: Crater Lakes, Terrestrial Degassing and Hyperacid Fluids in the Environment. Crater Lake, Oregon, 1996. P. 34.
- Giggenbach W.F. The chemistry of crater lake, Mt. Ruapehu (New Zealand) during and after the 1971 active period // New Zealand J. Sci. 1974. Vol. 17. P. 33–45.
- Kharchenko S.V., Kozlov D.N., Lebedeva E.V. Hypsobathymetric models of caldera complex Ksudach (Kamchatka) // IOP Conf. Ser. Earth Environ. Sci. 2020. Vol. 459. № 1. 022066.
- *Larson G.L.* Geographical distribution, morphology and water quality of caldera lakes: a review // Hydrobiologia. 1989. Vol. 171. P. 23–32.
- Manville V. Volcano-hydrologic hazards from volcanic lakes / Volcanic lakes. Berlin: Springer, 2015. P. 21–72.
- Melnikov D.V., Gavrilenko G.M., Ovsiannikov A.A. Conditions of the thermal acid lake of the active crater of Gorely volcano (Kamchatka, Russia) as a mediumterm precursors of its next eruption // IAVCEI. General Assembly 2008. Reykjavik, Iceland. P. 90.
- Meybeck M. Global distribution of lakes / Physics and Chemistry of Lakes / Lerman A., Imboden D., Gat J. (Eds.). Berlin: Springer, 1995. P. 1–36.

- Morgan A., Shanks III W.C., Pierce K.L., Lovalvo D.A., Lee G.K., Webring M.W., Stephenson W.J., Johnson S.Y., Harlan S.S., Schulze B., Finn C.A. The floor of Yellowstone Lake is anything but quiet! New discoveries in Lake Mapping // Yellowstone Sci. 2003. Vol. 11. № 2. P. 15–30.
- Pasternack G.B., Varekamp J.C. Volcanic lake systematic. P. I. Physical constraints // Bull. of volcanol. 1997. Vol. 58, P. 528–538.
- Ponomareva V.V., Melekestsev I.V., Dirksen O.V. Sector collapses and large landslides on Late Pleistocene—Holo-

- cene volcanoes in Kamchatka, Russia // J. Volcanol. and Geotherm. Res. 2006. Vol. 158. P. 117–138.
- *Takano B., Fazlullin S.* Preliminary investigation of Maly Semyachik volcano, Kamchatka // IWGCL Nesletter. 1994. № 7. P. 3–7.
- Taran Yu., Kalacheva E., Dvigalo V., Melnikov D., Voloshina E. Evolution of the crater lake of Maly Semiachik volcano, Kamchatka (1965–2020) // J. Volcanol. and Geotherm. Res. 2021. Vol. 418. 107351.
- Volcanic lakes / Rouwet D., et al. (Eds.). Berlin: Springer, 2015. 526 p.

Crater and Caldera Lakes of Far East of Russia: Morphology of Basins and Dynamic of Development

D. N. Kozlov^{1, *} and E. V. Lebedeva^{2, **}

¹Institute of Marine Geology and Geophysics FEB RAS, Yuzhno-Sakhalinsk, Russia

²Institute of Geography RAS, Moscow, Russia

*e-mail: kozlovdn@bk.ru

**e-mail: ekaterina.lebedeva@gmail.com

Based on the results of a set of field and cameral work data on the structural features of the basins and the dynamics of development of 15 crater and caldera lakes in the Kuril-Kamchatka region were obtained and analyzed. Their main morphometric characteristics were calculated. It was found that the group of caldera lakes is less homogeneous in all morphometric parameters. It was revealed that the basins of water bodies of the same genetic type on the Kuril Islands and Kamchatka are similar in shape and depth, but the absolute heights of Kamchatka water bodies are generally higher than those of the Kuril ones, however, as is often the size of the basins. The study of 10 lakes using the modern digital echolocation survey technique made it possible to reveal the specific features of the morphology of the basins of each of the groups. It was found that the basins of a number of caldera lakes in the region are complicated by explosive funnels, extrusive or effusive domes with traces of hydrothermal activity; their parameters were identified. An important distinguishing feature of many volcanic lakes is the possibility of rapid changes in their main characteristics (shape, volume, temperature, chemical composition of water, etc.) over a wide range, which is due to the peculiarities of the functioning of nearby volcanic centers. According to these parameters, volcanic lakes can be divided into: 1) very dynamic young lakes located in the craters of active volcanoes or active calderas in their immediate vicinity; 2) more stable, relict water bodies in the calderas of dormant or extinct volcanoes. The results of repeated observations after several decades made it possible to calculate the approximate rates of change in the levels of some lakes. It was found that the rate of fluctuations in the levels of caldera lakes is generally lower than that of crater lakes. The rate of growth of the underwater dome, discovered by the authors in 2016 in Lake Shtyubel (Ksudach caldera, Kamchatka), was determined.

Keywords: volcanic lakes, explosive funnel, underwater dome, echolocation survey, volcanic activity, gas hydrotherms, Kamchatka, Kuril Islands

REFERENCES

- Arakel'yants A.D., Tkachenko O.V. Hydrological characteristics of Lake Kronotskoye (Kamchatka) at the beginning of the XXI century. *Vestn. Mosk. Univ., Ser. 5: Geogr.*, 2012, no. 6, pp. 77–83. (In Russ.).
- Bondarenko V.I. Seismo-acoustic studies of the Kurile lake. *Vulkanol. Seismol.*, 1990, no. 4, pp. 92–111. (In Russ.).
- Braitseva O.A., Kraevaya T.S., Sheimovich V.S. About the origin of the Kurile Lake and the pumice of this region. *Vopr. Geogr. Kamchatki*, 1965, no. 3, pp. 49–57. (In Russ.).
- Brown G., Rymer H., Dowden J., Kapadia P., Stevenson D., Barquero J., Morales L.D. Energy budget analysis

- for Poas volcanic lake: implications for predicting volcanic activity. *Nature*, 1989, vol. 339, pp. 470–472.
- Casadevall T.J., de la Cruz-Reyna S., Rose W.I., Jr., Bagley S., Finnegan D.L., Zoller W.H. Crater lake and post-eruption hydrothermal activity, El Chichon volcano, Mexico. *J. Volcanol. Geotherm. Res.*, 1984, vol. 23, pp. 169–191.
- Chistenson B., Németh K., Rouwet D., Tassi F., Vandemeulebrouk J., Varekamp J. Volcanic Lakes. In *Volcanic Lakes*. Berlin: Springer, 2015, pp. 1–20.
- Demelle P., Bernard A. Geochemistry mineralogy and chemical modeling of the acid volcanic lake of Kawahidjen volcano, Indonesia. *Geochim. Cosmochim. Acta*, 1994, vol. 58, pp. 2445–2460.

- Fazlullin S.M., Ushakov S.V., Shuvalov R.A., Aoki M., Nikolaeva A.G., Lupikina E.G. The 1996 subaqueous eruption at Academii Nauk volcano (Kamchatka) and its effects on Karymsky lake. *J. Volcanol. Geotherm. Res.*, 2000, vol. 97, no. 1–4, pp. 181–193.
- Gavrilenko G.M. Hydrological model of the crater lake of the Maly Semyachik volcano (Kamchatka). *Vulkanol. Seismol.*, 2000, no. 6, pp. 1–11. (In Russ.).
- Gavrilenko G.M. Poor-known data for the Mutnovsky volcano crater lakes, Kamchatka. In *Abstracts. Chapman Conf.: Crater Lakes, Terrestrial Degassing and Hyper-acid Fluids in the Environment.* Oregon, 1996. 36 p.
- Gavrilenko G.M., Gavrilenko P.G. Temporary crater lakes on Mutnovsky volcano (Kamchatka): causes of their appearance and disappearance. *Vestn. KRAUNTs, Nauki o Zemle*, 2003, no. 2, pp. 118–121. (In Russ).
- Gavrilenko G.M., Mel'nikov D.V., Ovsyannikov A.A. The present state of thermal lake within the Gorely volcano crater (Kamchatka). In *Materialy konferentsii, posvyashchennoi 100-letiyu ekspeditsii Ryabushinskogo* [Materials of the Conf. on Centenary of the Ryabushinsky Expedition]. Petropavlovsk-Kamchatsky: IViS DVO RAN, 2009, pp. 86–95. (In Russ.).
- Giggenbach W.F. The chemistry of crater lake, Mt. Ruapehu (New Zealand) during and after the 1971 active period. *NZJ. Sci.*, 1974, vol. 17, pp. 33–45.
- Gorshkov G.S. The Zavaritsky caldera. *Byull. Vulkanol. Stantsii*, 1967, no. 30, pp. 31–49. (In Russ.).
- Kell N.G. Karta vulkanov Kamchatki [Map of the Volcanoes of Kamchatka]. Map, (2 sheets, scale 1:750 000), Explanatory Text and Illustrations. Leningrad: Russ. Geogr. O-vo, 1928.
- Kharchenko S.V., Kozlov D.N., Lebedeva E.V. Hypsobathymetric models of caldera complex Ksudach (Kamchatka). *IOP Conf. Ser. Earth Environ. Sci.*, 2020, vol. 459, no. 1, 022066.
- Korsunskaya G.V. Volcanoes of Simushir Island. *Byull. Vulkanol. Stantsii*, 1958, no. 24, pp. 61–65. (In Russ.).
- Kozlov D.N. Degterev A.V., Rybin A.V., Koroteev I.G., Klimantsov I.M., Chaplygin O.V., Chaplygin I.V. First results of bathymetric survey of the Kol'tsevoye volcanic lake (Onekotan Is., Northern Kuril Islands). *Vestn. KRAUNTs, Nauki o Zemle*, 2017, vol. 33, no. 1, pp. 89– 95. (In Russ.).
- Kozlov D.N. Kraternye ozera Kuril'skih ostrovov [Crater lakes of the Kurile Islands]. Yuzhno-Sakhalinsk: Obl. Kraevecheskii Muzei, DVO RAN, 2015. 112 p.
- Kozlov D.N. Morphology of Krasivoye crater lake. *Vestn. KRAUNTs, Nauki o Zemle,* 2016, vol. 31, no. 3, pp. 65–71. (In Russ.).
- Kozlov D.N., Belousov A.B. The up-to-date methods of intra-caldera lake studies (with special reference of Golovnin volcano, Kunashir Island, the Kuril Islands).
 In *Materialy 13 soveshchaniya geografov Sibiri i Dal'nego Vostoka* [Proc. 13th Conf. Geogr. of Siberia and Far East].
 Irkutsk: Inst. Geogr. SO RAN, 2007, vol. 1, pp. 142–144. (In Russ.).
- Kozlov D.N., Lebedeva E.V. Volcanic lakes of Ksudach caldera (Kamchatka) and the recent shore processes. In *36 Plenum Geomorfologicheskoi komissii RAN* [Proc. 36th Plenary Meeting of Geomorphological Commission].

- Barnaul: Altai. Gos. Univ., 2018, pp. 186–192. (In Russ.).
- Kozlov D.N., Lebedeva E.V., Zharkov R.V. Basins of Klyuchevoye and Shtyubel volcanic lakes (Ksudach caldera, Kamchatka). *Geogr. Prir. Resur.*, 2019, no. 4, pp. 153–164. (In Russ.).
- Kozlov D.N., Zharkov R.V. New data on the morphology of intra-caldera lakes on Kunashir and Simushir islands. *Vestn. KRAUNTs, Nauki o Zemle,* 2009, vol. 14, no. 2, pp. 159–164. (In Russ.).
- Larson G.L. Geographical distribution, morphology and water quality of caldera lakes: A review. *Hydrobiologia*, 1989, vol. 171, pp. 23–32.
- Lebedeva E.V. Caldera of the volcano Ksudach: modern relief formation processes and specific features of the river network. *Geomorfologiya*, 2017a, no. 3, pp. 60–75. (In Russ.).
- Lebedeva E.V. Lakes of the Ksudach caldera complex (Kamchatka): Coastal processes and the level fluctuations. *Geomorfologiya*, 2017b, no. 4, pp. 35–49. (In Russ.).
- Manville V. Volcano-hydrologic hazards from volcanic lakes. In *Volcanic Lakes*. Berlin: Springer, 2015, pp. 21–72.
- Marenina T.Yu. Essay on geology and petrography of Mutnovsky volcano. *Tr. Laboratorii Vulkanologii*, 1956, vol. 12, pp. 3–52. (In Russ.).
- Markhinin E.K. Eruption of Zavaritsky volcano, Simushir Island, autumn 1957. *Byull. Vulkanol. Stantsii*, 1960, no. 29, pp. 7–15. (In Russ.).
- Melekestsev I.V., Braitseva O.A., Ponomareva V.V., Sulerzhitskii L.D. Catastrophic caldera-forming eruptions of Ksudach volcano during the Holocene. *Vulkanol. Seismol.*, 1995, nos. 4–5, pp. 28–53. (In Russ.).
- Melnikov D.V., Gavrilenko G.M., Ovsiannikov A.A. Conditions of the thermal acid lake of the active crater of Gorely volcano (Kamchatka, Russia) as a mediumterm precursors of its next eruption. In *IAVCEI*. *General Assembly*. Reykjavik, Iceland, 2008, pp. 90.
- Meybeck M. Global distribution of lakes. In *Physics and Chemistry of Lakes*. Lerman A., Imboden D., Gat J., Eds. Berlin: Springer, 1995, pp. 1–36.
- Morgan A., Shanks III W.C., Pierce K.L., Lovalvo D.A., Lee G.K., Webring M.W., Stephenson W.J., Johnson S.Y., Harlan S.S., Schulze B., Finn C.A. The floor of Yellowstone Lake is anything but quiet! New discoveries in Lake Mapping. *Yellowstone Sci.*, 2003, vol. 11, no. 2, pp. 15–30.
- Murav'ev Ya.D., Fedotov S.A., Budnikov V.A., Ozerov A.Yu., Magus'kin M.A., Dvigalo V.N., Andreev V.I., Ivanov V.V., Kartasheva L.A., Markov I.A. Activity in the Karymsky Center in 1996: Summit eruption at Karymsky and phreatomagmatic eruption in the Akademii Nauk. *Vulkanol. Seismol.*, 1997, no. 5, pp. 38–71. (In Russ.).
- Nikolaeva A.G., Karpov G.A., Lupikina E.G., Ushakov S.V. Changes in the salt composition in water of thermal springs and of Karymsky lake after 1996 eruption. In *Materialy konferentsii, posvyashchennoi Dnyu vulkanologa* [Materials of the Annual Conference on the Volcanologist' Day]. Petropavlovsk-Kamchatskii: IViS DVO RAN, 2005, pp. 37–47. (In Russ.).
- Noveishii i sovremennyi vulkanism na territorii Rossii [The Newest and Modern Volcanism on the Territory of

- Russia]. Laverov N.P., Ed. Moscow: Nauka Publ., 2005. 604 p.
- Pasternack G.B., Varekamp J.C. Volcanic lake systematic. P. 1. Physical constraints. *Bull. Volcanol.*, 1997, vol. 58, pp. 528–538.
- Piip B.I. On the strength of the Ksudach volcano eruption in March 1907. *Byull. Vulkanol. Stantsii*, 1941, no. 10, pp. 23–29. (In Russ.).
- Pilipenko G.F., Razina A.A., Fazlullin S.M. Hydroterms of Ksudach caldera. *Vulkanol. Seismol.*, 2001, no. 6, pp. 43–57. (In Russ.).
- Ponomareva V.V., Melekestsev I.V., Dirksen O.V. Sector collapses and large landslides on Late Pleistocene—Holocene volcanoes in Kamchatka, Russia. *J. Volcanol. Geotherm. Res.*, 2006, vol. 158, pp. 117–138.
- Razzhigaeva N.G., Ganzei L.A. *Obstanovki osadkonako*pleniya ostrovnykh territorii v pleistotsen-golotsene [Sedimentation Conditions of Island Territories in the Pleistocene-Holocene]. Vladivostok: Dal'nauka Publ., 2006. 247 p.
- Rumyantsev V.A., Drabkova V.G., Izmailova A.V. *Ozera asiatskoi chasti Rossii* [Lakes of the Asian Part of Russia]. St. Petersburg: Svoe Izd-vo Publ., 2017, 480 p.
- Ryanzhin S.V., Ul'yanova T.Yu. Geographical information system "World Lakes" (GIS WORLDLAKE). *Dokl. Akad. Nauk*, 2000, vol. 370, no. 4, pp. 542–545. (In Russ.).

- Svirid I.Yu., Shevchenko A.V., Dvigalo V.N. Study of the activity of the Maly Semyachik volcano (Kamchatka) by the morphodynamic parameters of the Troitsky crater. *Vestn. KRAUNTs, Nauki o Zemle,* 2013, vol. 22, no. 2, pp. 129–143. (In Russ).
- Takano B., Fazlullin S. Preliminary investigation of Maly Semyachik volcano, Kamchatka. *IWGCL Newsletter*, 1994, no. 7, pp. 3–7.
- Taran Yu., Kalacheva E., Dvigalo V., Melnikov D., Voloshina E. Evolution of the crater lake of Maly Semiachik volcano, Kamchatka (1965-2020). J. Volcanol. Geotherm. Res., 2021, vol. 418, 107351.
- Taran Yu.A., Vakin E.A., Pilipenko G.F., Rozhkov A.M. Geochemical research in the crater of Mutnovsky volcano (Kamchatka). *Vulkanol. Seismol.*, 1991, no. 5, pp. 37–55. (In Russ).
- Volcanic Lakes. Rouwet D. et al., Eds. Berlin: Springer, 2015. 526 p.
- Zelenov K.K., Kanakina M.A. Biruzovoe lake (Zavaritsky caldera) and changes in the chemistry of its waters as a result of the 1957 eruption. *Byull. Vulkanol. Stantsii*, 1962, no. 32, pp. 33–44. (In Russ.).
- Zharkov R.V. *Termal'nye istochniki Yuzhnykh Kuril'skikh ostrovov* [Thermal Springs of the South Kuril Islands]. Vladivostok: Dal'nauka Publ., 2014. 378 p.
- Zharkov R.V. Types of thermal waters of the Southern Kurils and northern Sakhalin and their impact on land-scapes. Extended Abstract of Cand. Sci. (Geogr.) Dissertation. Khabarovsk: IVEP RAS, 2008. 26 p.