Mathematical Modeling of Runoff Formation Spatial Structure
https://doi.org/10.31857/S2587556620020107
Abstract
Runoff estimation of drainage basin’s different spatial structural parts is presented in the research. The hydrological role of runoff-forming complexes is considered by the case study of the northern macroslope of the Western Sayan Mountains. The aggregate database of vegetation, soil and slope characteristics (hydrological parameters for modelling) was received during of investigated region’s analysis. The base’s applicability is justified by high results of calculated and obtained daily water discharge hydrographs’ convergence. An effect of different forest types characteristics (species composition, tree crown cover, slope steepness, soil, vegetation and other) in the runoff forming was quantitative confirmed. Water discharge is mainly provided by taiga geosystems which are prevail in water catchment areas investigated. According to the assessment of drainage basin different parts’ contribution to runoff the largest runoff modules and rates per unit of area are observed in nival geosystems and mountain tundras. Inconsistency of the runoff modules changing with altitude related to features of snow storage in the upper mountain levels of the Sayan Mountains’ northern macroslope was revealed.
About the Authors
G. V. PryakhinaRussian Federation
E. S. Zelepukina
Russian Federation
S. A. Gavrilkina
Russian Federation
V. A. Solovyev
Russian Federation
Saint Petersburg, Yekaterinburg
N. I. Amburtseva
Russian Federation
Saint Petersburg
T. A. Vinogradova
Russian Federation
References
1. Antipov A.N., Gagarinova O.V., Fedorov V.N. Landscape hydrology: theory, methods and implementation. Geogr. Prir. Resur., 2007, no. 3, pp. 56—66. (In Russ.).
2. Budyko M.I. Teplovoi balans zemnoi poverhnosti [The Heat Balance of the Surface of the Earth]. Leningrad: Gidrometeoizdat Publ., 1956. 256 p.
3. Burakov D.A., Gordeev I.N. Assessing snow storage within the catchments of the Krasnoyarsk and Sayano-Shushenskoe reservoirs. Geogr. Prir. Resur., 2013, no. 1, pp. 72-78. (In Russ.).
4. Burenina T.A., Ovchinnikova N.F., Fedotova E.V Changes in the water balance structure in cutover areas of the dark-coniferous taiga in the Western Sayan. Geogr. Prir. Resur., 2011, no. 1, pp. 92-100. (In Russ.).
5. Burenina T.A., Fedotova E.V., Ovchinnikova N.F. Change in the structure of the hydrological cycle in connection with the age and recovery dynamics of forest ecosystems. Contemp. Probl. Ecol., 2012, vol. 5, no. 3, pp. 323-331.
6. Vinogradov Yu.B. Matematicheskoe modelirovanie pro-tsessov formirovaniya stoka. Kriticheskii analiz [Hydrograph Simulation of Runoff Formation Processes. Critical Analysis]. Leningrad: Gidrometeoizdat Publ., 1988. 312 p.
7. Vinogradov Yu.B., Vinogradova T.A. Matematicheskoe modelirovanie v gidrologii [Mathematical Modeling in Hydrology]. Moscow: Akademiya Publ., 2010. 298 p.
8. Gagarinova O.V. Landscape-hydrological regularities of runoff formation within the Lake Baikal watershed basin. Geogr. Prir. Resur., 2012, no. 3, pp. 55-60. (In Russ.).
9. Gaevskii V.L. Albedo of large areas. Tr. GGO, 1961, no. 109, pp. 61-75. (In Russ.).
10. Getker M.I., Zhdanov A.A. The pattern of distribution of snow cover height and density in Sayan mountain-taiga areas. Tr. SANIGMI. 1992, vol. 146 (227), pp. 56-63. (In Russ.).
11. Goroshko N.V Landscape-hydrological analyses of annual discharge in the Upper Ob basin. Cand. Sci. (Geogr.) Dissertation. Irkutsk: Novosibirsk. State Pedagogical Univ., 2007. 270 p.
12. Zubenok L.I. Isparenie na kontinentakh [Evaporation on the Continents]. Leningrad: Gidrometeoizdat Publ., 1976. 295 p.
13. Kachinskii N.A. Fizikapochv [Soil Physics]. Moscow: Vysshaya Shkola Publ., 1965. 318 p.
14. Korchagin A.A., Mazirov M.A., Shushkevich N.I. Fizika pochv: laboratornyipraktikum [Soil Physics: Laboratory Workshops]. Vladimir: Vladimir. Gos. Univ., 2011. 99 p.
15. Pryakhina G.V., Zelepukina E.S., Zhuravlev S.A., Osipova T.N., Amburtceva N.I., Vinogradova T.A. The assessment of run-off from small mountain watersheds by hydrologic modelling. Vestn. Mosk. Univ., Geogr., vol. 5, 2017, no. 1, pp. 29-37. (In Russ.).
16. Rakhmanov V.V. Gidroklimaticheskaya rol’ lesov [Hydroclimatic Role of Forests]. Moscow: Lesnaya Prom-st. Publ., 1984. 240 p.
17. Resursy poverkhnostnykh vod SSSR. Osnovnye gidrolog-icheskie kharakteristiki [USSR Surface Water Resources. Main Hydrological Features]. Leningrad: Gidrometeoizdat Publ., 1977, vol. 16, no. 1. 388 p.
18. Certificate of State Registration of the Computer Program No. 2018619084 “Complex Program of the Distributed Hydrological Model “Hydrograph”, the Right Holder is O.M. Makarieva, Registration Date: 30.07.2018. (In Russ.).
19. Nauchno-prikladnoi spravochnik po klimatu SSSR [A Handbook to Climate of USSR], vol. 21, book 1: Kras-noyarskii krai i Tuvinskaya ASSR [Krasnoyarsk Krai and Tuva Republic]. Leningrad: Gidrometeoizdat Publ. 1967. 504 p.
20. Tsymbalei Yu.M., Andreeva I.V. On accounting the landscape patterns of the catchments when assessing the water balance of water intakes (by the example of a drainage area of the Ob-Irtysh interfluve). Izv. Altais-kogo Otd. Russ. Geogr. O—va, 2015, no. 1(36), pp. 2330. (In Russ.).
21. Nash J.E., Sutcliffe J.V River flow forecasting through conceptual models part I - A discussion of principles. J. Hydrol., 1970, vol. 10, no. 3, pp. 282-290.
22. Semenova O.M. Experience in modelling runoff formation processes at different scales using data of water-balance stations. In Status and Perspectives of Hydrology in Small Basins (Proc. of the Workshop Held at Goslar-Hahnenklee, Germany, 30 March-2 April 2009). IAHS Publ., no. 336, 2010, pp. 167-172.
23. Shamseldin A.Y., O’Connor K.M. A non-linear neural network technique for updating of river flow forecasts. Hydrol. Earth Syst. Sci., 2001, vol. 5, no. 4, pp. 577-598.
24. Vinogradov Y.B., Semenova O.M., Vinogradova T.A. An approach to the scaling problem in hydrological modelling: the deterministic modelling hydrological system. Hydrol. Process., vol. 25, no. 7, pp. 1055-1073. Doi: 10.1002/hyp.7901
25. Zelepukina E., Pryakhina G., Shastina G., Amburtceva N., Gavrilkina S. Estimation of small mountain drainage basin runoff based on runoff formation model (West Sayan case study). In Int. Multidisciplinary Sci. Geoconf. Surveying Geology and Mining Ecology Management, SGEM. Conf. Proc. 2017, vol. 17, no. 31, pp. 245-252. Doi: 10.5593/sgem2017/31
Graphical Abstract
|
1. Стокоформирующие комплексы в бассейнах р. Ус и р. Амыл | |
Subject | ||
Type | Исследовательские инструменты | |
View
(849KB)
|
Indexing metadata ▾ |
|
2. Runoff-forming complexes in catchment areas of the rivers Us and Amil | |
Subject | ||
Type | Исследовательские инструменты | |
View
(58KB)
|
Indexing metadata ▾ |
![]() |
3. PDF | |
Subject | ||
Type | Исследовательские инструменты | |
Download
(3MB)
|
Indexing metadata ▾ |
- The aggregated database of vegetation, soil and slope characteristics of the Western Sayan region as parameters for hydrological modelling was created.
- Agreement between modelled and observed hydrographs of daily water discharge allowed for an assessment of the long-term average runoff from the different run-off complexes and their contribution to the formation of mountain rivers drain.
- An effect of different forest types characteristics, e.g. species composition, tree crown cover, slope steepness, soil, and vegetation, in the runoff forming was quantitatively confirmed.
- Revealed inconsistency of the runoff modules, changing with altitude, related to the features of snow storage in the upper levels of drainage basins.
Review
For citations:
Pryakhina G.V., Zelepukina E.S., Gavrilkina S.A., Solovyev V.A., Amburtseva N.I., Vinogradova T.A. Mathematical Modeling of Runoff Formation Spatial Structure. Izvestiya Rossiiskoi Akademii Nauk. Seriya Geograficheskaya. 2020;84(2):218-227. (In Russ.) https://doi.org/10.31857/S2587556620020107