Macrophytobenthos in the Concept of Large Marine Ecosystems: The Southern Seas of Russia
https://doi.org/10.31857/S2587556620020132
Abstract
The concept of Large Marine Ecosystems assesses the state and dynamics of long-term changes in qualitative and quantitative indicators of macrophytobenthos (macroalgae and seagrasses) of the Russian southern seas. It is shown that changes in the species composition and spatial distribution of macrophytobenthos of marine ecosystems (the Sea of Azov, the Caspian Sea) are associated with fluctuations in salinity and sea level. For the Caspian Sea northern part (Russian sector) since the early 2000s. there is an increase in the share of sap-robial complex of green and red algae, the expansion of the habitat of Zostera noltii, due to changes in salinity and water level in the reservoir. The greatest destruction of macrophytobenthos in the Black Sea observed in marine estuaries, port areas, including in Novorossiysk Bay. The most resistant to the action of petroleum products are brown algae (Cystoseria), less green (Ulva) and red (Ceramium). Mathematical models of the Northern Caspian water and coastal-water vegetation response to changes in water level and salinity are constructed. These models adequately reflect the ongoing natural processes and allow to predict the impact of climate and anthropogenic load (economic activity) on aquatic biological resources. The necessity of the macrophytobenthos ecosystem “services” assessment for the Russian economy is pointed out.
Keywords
About the Author
O. V. StepanyanRussian Federation
Rostov-on-Don
References
1. Berdnikov S.V, Markitan L.V., Stepan’yan O.V. Spatially detailed model of long-term dynamics of coastal and aquatic vegetation and the number of waterfowl in the mouth of the Volga region. Usp. Sovr. Biol., 2009, vol. 129, no. 1, pp. 80-92. (In Russ.).
2. Berdnikov S.V, Stepan’yan O.V., Markitan L.V. Assessment of the impact of oil spills on the distribution of coastal aquatic vegetation and waterfowl in the North Caspian (model experiment). Zashchita Okruzhayush-chei Sredy v Neftegazovom Komplekse, 2018, no. 5, pp. 14-19. (In Russ.).
3. Vodorosli [Algae]. Vasser S.P., Kondrat’eva N.V., Masyuk N.P., Eds. Kiev: Naukova Dumka Publ., 1989. 608 p.
4. Gromov V.V Makrofitobentos yuzhnykh morei Rossii. Vodorosli severo-kavkazskogopoberezh’ya Chernogo mo-rya, pribrezhno-vodnaya rastitel’nost’ Azovskogo morya i Severnogo Kaspiya [Macrophytobenthos of the Southern Seas of Russia. Algae of the North Caucasian Black Sea Coast, Coastal Aquatic Vegetation of the Sea of Azov and the North Caspian]. Palmarium Akad. Publ., 2012. 337 p.
5. Evstigneeva I.K. Species composition and quantitative characteristics of Cystoseira crinita Bory epiphytes. Al-gologiya, 1993, vol. 3, no. 4, pp. 52-57. (In Russ.).
6. Kalugina-Gutnik A.A. Fitobentos Chernogo morya [Phytobentos of the Black Sea]. Kiev: Naukova Dumka Publ., 1975. 245 p.
7. Karaeva N.I., Zaberzhinskaya E.B. Dynamics of Zostera noltii Hornem off the Azerbaijani Caspian coast. Visnyk ONU, 2008, vol. 13, no. 4, pp. 196-199. (In Russ.).
8. Kaspiiskoe more: Fauna i biologicheskaya produktivnost’ [The Caspian Sea: Fauna and Biological Productivity]. Moscow: Nauka Publ., 1985. 277 p.
9. Kireeva M.S. Plant wealth of the seas of the Soviet Union. Rastit. Resur., 1965, vol. 1, no. 3, pp. 323-335. (In Russ.).
10. Kopelevich O.V., Burenkov V.I., Vazyulya S.V., She-berstov S.V. Problems of detection of coccolithophore blooms from satellite data. Sovrem. Probl. Dist. Zond. Zemli Kosmosa, 2012, vol. 9, no. 5, pp. 241-250. (In Russ.).
11. Kukushkin A.S., Prokhorenko Yu.A., Khoroshun S.A. Longterm variability of water transparency in the shelf and deep-sea areas of the Black sea in the twentieth century. Ekol. Bezopasnost’ Pribrezhnoi i Shelfovoi Zon Morya, 2013, no. 27, pp. 243-248. (In Russ.).
12. Matishov G.G. Effect of changeability of climatic and ice conditions on shipping. Vestn. Ross. Akad. Nauk, 2008, vol. 78, no. 10, pp. 896-902. (In Russ.).
13. Matishov G.G., Berdnikov S.V. Extreme flooding of the Don Delta in spring 2013. Izy. Akad. Nauk, Ser. Geogr., 2015, no. 1, pp. 111-118. (In Russ.). doi 10.15356/0373-2444-2015-1-111-118
14. Matishov G.G., Berdnikov S.V., Zhichkin A.P., Dz-henyuk S.L., Smolyar I.V., Kulygin V.V., Yaitskaya N.A., Povazhniy V.V., Sheverdyaev I.V., Kumpan S.V., Tret’yakova I.A., Tsygankova A.E., D’yakov N.N., Fomin V.V., Klochkov D.N., Shatohin B.M., Plotnikov V.V., Vakul’skaya N.M., Luchin V.A., Kroots A.A. Atlas of Climatic Changes in Large Marine Ecosystems of the Northern Hemisphere (1878-2013). Matishov G.G., Sherman K., Levitus S., Eds. NOAA Atlas NESDIS 78. 131 p. doi 10.7289/V5Q52MK5
15. Matishov G.G., Dzhenyuk S.L., Zhichkin A.P., Moiseev D.V. The climate of the seas of the Western Arctic in the early XXI century. Izv. Akad. Nauk, Ser. Geogr., 2011, no. 3, pp. 17-32. (In Russ.).
16. Matishov G.G., Makarevich P.R., Moiseev D.V. Kli-mat i bol’shie morskie ekosistemy Arktiki [Climate and Large Marine Ecosystems of the Arctic]. Rostov-on-Donu: Yuzhn. Nauchn. Tsentr Akad. Nauk, 2016. 96 p.
17. Matishov G.G., Matishov D.G., Gargopa Yu.M., Dashkevich L.V. The freezing of the Azov sea and the climate of the early XXI century. Vestn. Yuzhn. Nauchn. Tsentra, 2010, vol. 6, no. 1, pp. 33-40. (In Russ.).
18. Matishov G.G., Stepan’yan O.V., Grigorenko K.S., Khar’kovskii V.M., Povazhnyi V.V., Soier V.G. Specific features of hydrological and hydrochemical conditions of the Sea of Azov and the Black Sea in 2013. Vestn. Yuzhn. Nauchn. Tsentra, 2015, vol. 11, no. 2, pp. 36-44. (In Russ.).
19. Matishov G.G., Stepan’yan O.V., Khar’kovskii V.M., Soier V.G. Oil pollution of the Azov and the Black seas is growing. Priroda, 2016, no. 5, pp. 64-69. (In Russ.).
20. Matishov G.G., Yaitskaya N.A., Berdnikov S.V. Peculiarities of the centennial salinity regime of the Caspian Sea. Dokl. Earth Sci., 2012, vol. 444, no. 2, pp. 747-751. doi 10.1134/S1028334X12060141
21. Mikaelyan A.S., Silkin V.A., Pautova L.A. Coccolitho-phorids in the Black Sea: their interannual and longterm changes. Oceanology, 2011, vol. 51, no. 1, pp. 39-48. doi 10.1134/S0001437011010127
22. Mil’chakova M.A. Macrophytobentos. In Sovremennoe sostoyanie bioraznoobraziya pribrezhnykh vod Kryma (chernomorskii sektor) [Current State of Biodiversity of the Coastal Waters of Crimea (Black Sea Sector)]. Sevastopol: EKOSI-Gidrofizika Publ., 2003, pp. 152-208. (In Russ.).
23. Mil’chakova N.A., Mironova N.V., Ryabogina V.G. Marine plant resources. In Promyslovye bioresursy Chernogo i Azovskogo morei [Commercial Bioresources of the Black and Azov Seas]. Sevastopol, 2011, pp. 117— 139. (In Russ.).
24. Minicheva G.G. New invader in the Black sea: brown algae Chorda tomentosa Lyngb. Algologiya, 2015, vol. 25, no. 3, pp. 323—329. (In Russ.).
25. Minicheva G.G. Contemporary morphofunctional transformation of seaweed communities of the Zernov phyllophora field. Algologiya, 2007, vol. 17, no. 2, pp. 171—190. (In Russ.).
26. Mironov O.G. Vzaimodeistvie morskikh organizmov s neftyanymi uglevodorodami [The Interaction of Marine Organisms with Petroleum Hydrocarbons]. Leningrad: Gidrometioizdat Publ., 1985. 127 p.
27. Mironov O.G., Tzymbal I.M. Development of macrophyte algae in conditions of oil pollution. Nauchn. Dokl. Vyssh. Shkoly. Biolog. Nauki, 1975, no. 5. pp. 53— 56. (In Russ.).
28. Mityaseva N.A., Maksimova O.V., Georgiev A.A. Macroalgae flora of the Northern part of the Russian Black sea coast. Ekologiya Morya, 2003, vol. 64, pp. 24—29. (In Russ.).
29. Morskie okhranyaemye akvatorii Kryma [Marine Protected Waters of Crimea]. Mil’chakova N.A., Ed. Simferopol: Orianda Publ., 2015. 312 p.
30. Nikitina V.N., Lisovskaya O.A. Makrofitobentos verkhnikh otdelov beregovoizony rossiiskogopoberezh’ya Chernogo morya [Macrophytobenthos of the Upper Parts of the Coastal Zone of the Russian Black Sea Coast]. St. Petersburg: S.-Peterb. Univ., 2013. 132 p.
31. Sadogurskii S.E. On the study of macrophytobenthos off the Black Sea coast of the Kerch Peninsula (Crimea). Algologiya, 2007, vol. 17, no. 3, pp. 345—360. (In Russ.).
32. Stepan’yan O.V. Effect of crude oil on early stages of macroalgae development in the Barents sea. Botan. Zh., 2013, vol. 98, no. 7, pp. 903—912. (In Russ.).
33. Stepan’yan O.V. The oil film influence on photosynthesis of brown algae in the Barents sea. Botan. Zh., 2014, vol. 99, no. 10, pp. 1095—1100. (In Russ.).
34. Stepanian O.V. Macrophytobenthos of the Caspian sea: Diversity, distribution, and productivity. Oceanology, 2016, vol. 56, no. 3, pp. 395—405. doi 10.1134/S0001437016030218
35. Stepan’yan O.V. Macrophytobenthos of the Novorossiysk Bay (the Black Sea): degradation under conditions of economic activity and climate changes. Vestn. Kam-chatGTU, 2018, no. 4, pp. 110—116. (In Russ.).
36. Stepan’yan O.V. Distribution of macroalgae and seagrasses in the Azov sea, the Kerch Strait and the Taman Bay. Okeanologiya, 2009, vol. 49, no. 3, pp. 393—399. (In Russ.).
37. Stepan’yan O.V. The modern diversity of macroalgae of the Azov, Black and Caspian seas. Dokl. Akad. Nauk, 2014, vol. 458, no. 2, pp. 229—232. (In Russ.).
38. Stepan’yan O.V. Chronic pollution improves the resistance of Focus vesiculosus (L.) brown algae to the effect of oil hydrocarbons. Zashchita Okruzhayushchei Sredy v Neftegazovom Komplekse, 2015, no. 2, pp. 22—25. (In Russ.).
39. Stepan’yan O.V., Voskoboinikov G.M. Influence of oil and oil products on morphological and functional features of marine macroalgae. Biologiya Morya, 2006, vol. 32, no. 4, pp. 241—248. (In Russ.).
40. Stepan’yan O.V., Matishov G.G., Kulygin V.V. The stability of macroalgae of the Barents sea to oil pollution. Nauka Yuga Rossii, 2017, vol. 13, no. 3, pp. 103—108. (In Russ.).
41. Teyubova V.F. Diversity and ecological features of macrophytobenthos in the Russian sector of the Black sea. Extended Abstract of Cand. Sci. (Biol.) Dissertation. Krasnodar: Kuban. State Univ., 2012. 20 p.
42. Tkachenko F.P., Tret’yak I.P., Kostylev E.F. Macrophytobenthos of Zernov phyllophora field in present conditions (Black Sea, Ukraine). Algologiya, 2008, vol. 18, no. 4, pp. 423—431. (In Russ.).
43. Chizhenkova O.A., Zaitsev V.F. Peculiarities of macrophyte and zoobenthos development and distribution in different types of sediments in the Northern Caspian. Vestn. Astrakhan. Gos. Tekh. Univ., Ser. Rybnoe Khozyaistvo, 2011, no. 2, pp. 69—73. (In Russ.).
44. Shavykin A.A., Il’in G.V. Otsenka integral’noi uyazvi-mosti akvatorii Barentseva morya ot neftyanogo zagryaz-neniya [Assessment of Integrated Vulnerability of the Barents Sea Water Area to Oil Pollution]. Murmansk: Murmansk. Morskoi Biol. Inst. Kol’sk. Nauchn. Tsen-tra Akad. Nauk, 2010. 110 p.
45. Shakhin D.A., Pinaev V.E. Otsenka sovremennogo sostoyaniya okruzhayushchei sredy v ramkakh ekologich-eskogo soprovozhdeniya proektov [Assessment of the Current State of the Environment in the Framework of the Environmental Support of Projects]. Moscow: MAKS Press, 2013. 214 p.
46. Kontoyiannis H., Papadopoulos V., Kazmin A., Zatsepin A., Georgopoulos D. Climatic variability of the sub-surface sea temperatures in the Aegean-Black Sea system and relation to meteorological forcing. Clim. Dyn., 2012, vol. 39, no. 6, pp. 1507—1525.
47. Merzouka А., Johnson L.E. Kelp distribution in the northwest Atlantic Ocean under a changing climate. J. Exp. Mar. Biol. Ecol., 2011, vol. 400, no. 1—2, pp. 90—98.
48. Minicheva G., Afanasyev D., Kurakin A. Black Sea Monitoring Guidelines. Macrophytobenthos. EMBLAS, 2014. Available at: http://emblasproject.org/wp-con-tent/uploads/2013/12/Manual_macrophytes_EM-BLAS_ann.pdf (accessed: 10.01.2020).
49. Oguz T., Velikova V. Abrupt transition of the northwestern Black Sea shelf ecosystem from a eutrophic to an alternative pristine state. ?Mar. Ecol. Prog. Ser., 2010, vol. 405, pp. 231—242.
50. Sherman K., Sissenwine M., Christensen V., Duda A., Hempel G., Ibe C., Levin S., Lluch-Belda D., Matishov G., McGlade J., O’Toole M., Seitzinger S., Ser-ra R., Skjoldal H.-R., Tang Q., Thulin J., Vandeweerd V., Zwanenburg K.A. Global movement toward an ecosystem approach to management of marine resources. Mar. Ecol. Prog. Ser., 2005, vol. 300, pp. 275—279.
51. Order of the Ministry of Agriculture of the Russian Federation of October 27, 2017 No. 533 “On Approval of the Total Allowable Catch of Aquatic Biological Resources in the Inland Waters of the Russian Federation, the Territorial Sea of the Russian Federation, on the Continental Shelf of the Russian Federation and in the Exclusive Economic Zone of the Russian Federation, in the Azov and Caspian Seas for 2018. Available at: https://fishnews.ru/_img/docs/1132/prikaz_msh_-_533_ ot_27-10-17_ob_utv-_odu_morskoe_2018_god.pdf (accessed: 10.01.2020). (In Russ.).
Graphical Abstract
|
1. Long-term dynamics of red algae stocks in the Zernov Phyllophora field; sea surface temperature (August); transparency of sea water in the deep sea | |
Subject | ||
Type | Исследовательские инструменты | |
View
(109KB)
|
Indexing metadata ▾ |
![]() |
2. PDF | |
Subject | ||
Type | Исследовательские инструменты | |
Download
(3MB)
|
Indexing metadata ▾ |
- Changes in the species composition and spatial distribution of the Black Sea, the Sea of Azov and the Caspian Sea macrophytobenthos are cyclical and are associated with fluctuations in temperature, transparency, and salinity.
- The largest changes were observed for commercial species: expansion of the Zostera (the Sea of Azov, the Caspian Sea), degradation of the Cystoseira and Phyllophora communities (the Black Sea).
- The maximum destruction of macrophytobenthos in the Black Sea is observed in marine estuaries, namely port waters, such as the Novorossiysk Bay.
- Mathematical models of the response of water and coastal vegetation of the Northern Caspian Sea to changes in environmental factors allow for predicting damage to water bioresources due to climate changes and economic activity.
Review
For citations:
Stepanyan O.V. Macrophytobenthos in the Concept of Large Marine Ecosystems: The Southern Seas of Russia. Izvestiya Rossiiskoi Akademii Nauk. Seriya Geograficheskaya. 2020;84(2):228-238. (In Russ.) https://doi.org/10.31857/S2587556620020132