Problems and Methods of Experimental Geographical Ecology
https://doi.org/10.31857/S2587556620020077
Abstract
The author’s paradigm of experimental geographical ecology and its core-landscape ecology—has been set forth. The empirical statistical models and the ecological geographical concepts developed on their basis are described. They disclose the mechanisms of formation of regional- and local-level landscape-ecological systems, their natural and anthropogenic dynamics and evolutionary trends. New provisions on the mono- and polysystemic organization of the geographical environment have been put forward and substantiated: 1) environmental principles and mechanisms for the formation of zonal geospace and its borders; 2) the concept of polymorphism of landscape-zonal systems as a basic model for the further development of integrated physical geography; 3) a paleo-forecasting concept that describes the predicted scenarios and their paleogeographic analogues as a single system of global changes in the environment; 4) topo-ecological forecasting concept as a scientific and methodological basis of local geosystem monitoring; 5) new provisions of the theory of sustainability of natural ecosystems and methods for calculating their functional stability based on the parameters of the biological cycle. A methodology for numerical landscape-ecological forecasting developed by the author and brought to the prescription level is presented, and regional and local landscape-ecological forecasts are given based on forthcoming global climate changes. The predictive ecological analysis was performed by models of base states of the geo(eco-)systems and there climatogenic changes, with application of methods of empirical simulation techniques for the estimated prognostic situations. A strategy is proposed, and algorithms are developed for applying landscape ecology methods for quantitative forecast estimates of the biotic regulation of the carbon cycle under global climate changes. In the constructed models, geographical ecology acquires an effective formalized tool for analysis and prediction using the methods of discrete mathematics for the processing and generalization of bulk empirical data obtained from field and laboratory landscape studies.
Keywords
About the Author
E. G. KolomytsRussian Federation
Togliatti
References
1. Andreev V.L. Klassifikatsionnye postroeniya v ekologii i sistematike [Classification Constructions in Ecology and Taxonomy]. Moscow: Nauka Publ., 1980. 142 p.
2. Antipov A.N., Vinkel’brandt A., Drozdov A.V., Tish-kov A.A. Landshaftnoe planirovanie: printsipy, metody, evropeiskii i rossiiskii opyt [Landscape Planning: Principles, Methods, European and Russian Experience]. Irkutsk: Inst. Geogr. Sib. Otd. Akad. Nauk, 2002. 141 p.
3. Armand A.D., Vedyushkin M.A. Triggernye geosistemy [Trigger Geosystems]. Moscow: Inst. Geogr. Akad. Nauk, 1989. 51 p.
4. Armand D.L. Nauka o landshafte [Landscape Science]. Moscow: Mysl’ Publ., 1975. 287 p.
5. Budyko M.I. Evolyutsiya biosfery [Evolution of Biosphere]. Leningrad: Gydrometeoizdat Publ., 1984. 488 p.
6. Vedyushkin M.A. Modeling of spatial transitions between phytocoenoses. In Matematicheskoe modeliro-vanie populyatsii rastenii i fitotsenozov [Mathematical Modeling of Plant Populations and Phytocenoses]. Moscow: Nauka Publ., 1992, pp. 24-30. (In Russ.).
7. Vysotskii G.N. Izbrannye Trudy [Selected Works]. Moscow: Sel’khozgiz Publ., 1960. 435 p.
8. Gerasimov I.P. Ekologicheskieproblemy vproshloi, nas-toyashchei i budushcheigeografii mira [Ecological Problems in the Past, Present and Future Geography of the World]. Moscow: Nauka Publ., 1985. 247 p.
9. Gerasimov I.P. Uchenie Dokuchaeva i sovremennost’ [The Doctrine of Dokuchaev and Modernity]. Moscow: Mysl’ Publ., 1986. 124 p.
10. Paleogeografiya Evropy zaposlednie sto tysyach let. Atlas-monografiya [Paleogeography of Europe over the Past Hundred Thousand Years. Atlas Monograph]. Gerasimov I.P., Velichko A.A., Eds. Moscow: Nauka Publ., 1982. 156 p.
11. Golubev G.N. Geoekologiya [Geoecology]. Moscow: GEOS Publ., 1999. 337 p.
12. Gorshkov V.G. Fizicheskie i biologicheskie osnovy ustoi-chivosti zhizni [Physical and Biological Basis of Life Stability]. Moscow: VINITI, 1995. 470 p.
13. Gorshkov S.P. Kontseptual’nye osnovygeoekologii [Conceptual Foundations of Geoecology]. Smolensk: Smolensk. Gos. Univ., 1988. 445 p.
14. Grigor’ev A.A. Zakonomernosti stroeniya i razvitiya geograficheskoi sredy [Patterns of the Structure and Development of the Geographical Environment]. Moscow: Mysl’ Publ., 1966. 382 p.
15. Dokuchaev V.V. Izbrannye Sochineniya [Selected Works]. Vol. 3: Kartografiya, genesis i klassifikatsiya pochv [Cartography, Genesis and Classification of Soils]. Moscow: Gos. Izd-vo S-kh. Literatury, 1949. 446 p.
16. Puly ipotoki ugleroda v nazemnykh ekosistemakh Rossii [Pools and Carbon Flows in Terrestrial Ecosystems of Russia]. Zavarzin G.A., Ed. Moscow: Nauka Publ., 2007. 315 p.
17. Zalikhanov M.Ch., Kolomyts E.G., Tsepkova N.L., Sharaya L.S., Surova N.A. Vysokogornaya geoekologiya v modelyakh [High Mountain Geoecology in Models]. Moscow: Nauka Publ., 2010. 487 p.
18. Isachenko A.G. Vvedenie v ekologicheskuyu geografiyu [Introduction to Environmental Geography]. St. Petersburg: S.-Peterb. Univ., 2003. 192 p.
19. Kobak K.I., Kondrasheva N.Yu., Turchinovich I.E. The impact of climate change on the natural zonality and ecosystems of Russia. In Izmeneniya klimata i ikh posledstviya [Climate Change and its Impact]. Men-zhulin G.V., Ed. St. Petersburg: Nauka Publ., 2002, pp. 205-210. (In Russ.).
20. Kolomyts E.G. Regional’naya model’ globalnykh izme-neniiprirodnoi sredy [Regional Model of Global Environmental Changes]. Moscow: Nauka Publ., 2003. 371 p.
21. Kolomyts E.G. Boreal’nyi ekoton i geograficheskaya zonal’nost’. Atlas-monografiya [Boreal Ecotone and Geographical Zonality. Atlas-Monograph]. Moscow: Nauka Publ., 2005. 390 p.
22. Kolomyts E.G. Lokal’nye mekhanizmy global’nykh izmenenii prirodnykh ekosistem [Local Mechanisms of Global Changes in Natural Ecosystems]. Moscow: Nauka Publ., 2008. 427 p.
23. Kolomyts E.G. Tikhookeanskii megaekoton Severnoi Evrasii. Evolutsionnaya model’ kontinental’noi biosfery [Pacific Mega Ecotone of the Northern Eurasia. Evolutionary Model of Continental Biosphere]. Moscow: GEOS Publ., 2017. 495 p.
24. Kolomyts E.G., Rozenberg G.S., Sharaya L.S. Methods of landscape ecology in prognostic estimation of the biotic regulation of the carbon cycle under conditions of global climate warming. Russ. J. Ecol., 2009, vol. 40, no. 6, pp. 379-386.
25. Kolomyts E.G., Kerzhentsev A.S., Sharaya L.S. Analytical and cartographic models of the functional sustainability of forest ecosystems. Usp. Sovrem. Biol., 2015, vol. 135, no. 1, pp. 74-96. (In Russ.).
26. Okhrana landshaftov. Tolkovyi slovar’ [Protection of Landscapes. Dictionary]. Preobrazhenskii V.S., Ed. Moscow: Progress Publ., 1982. 272 p.
27. Puzachenko Yu.G., Skulkin V.S. Struktura rastitel’nosti lesnoi zony SSSR. Sistemnyi analiz [The Structure of Vegetation of the Forest Zone of the USSR: System Analysis]. Moscow: Nauka Publ., 1981. 275 p.
28. Rozenberg G.S. Modeli v fitotsenologii [Models in Phy-tocenology]. Moscow: Nauka Publ., 1984. 265 p.
29. Rozenberg G.S. Toward a system of concepts of modern ecology. Zh. Obshch. Biol., 1991, vol. 52, no. 3, pp. 422-440. (In Russ.).
30. Tishkov A.A., Osipov V.I. Geoecology. In Bol’shaya Rossiiskaya entsiklopediya [Great Russian Encyclopedia]. Vol. 6. Moscow: Nauch. Izd. “Bol’shaya Rossijskaya enciklopediya”, 2006, p. 657. (In Russ.).
31. Shubnikov A.V. Izbrannye Trudy po kristallografii [Selected Works on Crystallography]. Moscow: Nauka Publ., 1975. 551 p.
32. Bonan G.B., Polland D., Thompson S.L. Effect of boreal forest vegetation on global climate warming. Nature, 1992, vol. 359, pp. 716-718.
33. Climate Change 1995: The Science of Climatic Change. Houghton J.T., Meira Filho L.G., Callander B.A., Harris N., Katenberg A., Maskell K., Eds. Cambridge, UK: Cambridge Univ. Press, 1996. 572 p. doi: 10.1002/j.1477-8696.1996.tb06169.x
34. Forman R.T.T., Gordon M. Landscape Ecology. New York: John Wiley & Sons, 1986. 437 p.
35. Hansen J.G., Fung I., Lacis A., Rind D., Lebedeff S., Ruedy R., Russel G., Stone P. Global climate changes as forecasted by Goddard Institute for Space Studies threedimensional model. J. Geophys. Res., 1988, vol. 93, no. D8, pp. 9341-9354. doi: 10.1029/JD093iD08p09341
36. Hansen J., Sato M., Ruedy R., et al. Climate simulations for 1880-2003 with GISS model E. Clim. Dyn., 2007, vol. 29, pp. 661-696.
37. Hay G.J., Marceau D.J., Dube P., Bouchard A. A multiscale framework for landscape analysis: object-specific analysis and up scaling. Landsc. Ecol., 2001, vol. 16, no. 6, pp. 471-490.
38. Leemans R. Modelling ecological and agricultural impacts of global change on a glob-al scale. J. ofSci. & Industrial Res., 1992, vol. 51, no. 8-9, pp. 709-724.
39. Pope V.D., Gallani M.L., Rowntree P.R., Stratton R.A. The impact of new physical parametriza-tions in Hadley Centre climate model - HadCM3. Clim. Dyn., 2000, vol. 16, no. 2-3, pp. 123-146.
Graphical Abstract
|
1. Vector graphs of the probabilities of functional transitions between the plant formation groups of the headwater of Volga river basin on the prognostic period up to year 2100 and on their deviation from the base period of Miculino interglacial optimum | |
Subject | ||
Type | Исследовательские инструменты | |
View
(87KB)
|
Indexing metadata ▾ |
![]() |
2. PDF | |
Subject | ||
Type | Исследовательские инструменты | |
Download
(5MB)
|
Indexing metadata ▾ |
- Geosystems change likely towards the systems that are functionally isomorphic, i.e. similar in primary bioproductivity or parameters of the descending branch of metabolism.
- Under the predicted thermo-arid trend in the next 100 years, forest biogeosystems in the transitional zone between forest and steppe in the European part of Russia will lose stability. A progressive steppe expansion on the forest areas is expected.
- Some forest formations, mainly taiga and subtaiga, contribute to positive regulation of the carbon cycle while others, such as nemoral and forest-steppe, contribute to the negative regulation.
- According to the relationship between carbon balance and sustainability of forest biogeocoenoses, five types of their functional states were identified: degradational, adaptive, optimal, suboptimal, and pessimal.
Review
For citations:
Kolomyts E.G. Problems and Methods of Experimental Geographical Ecology. Izvestiya Rossiiskoi Akademii Nauk. Seriya Geograficheskaya. 2020;84(3):325-340. (In Russ.) https://doi.org/10.31857/S2587556620020077