Correlation of the Monthly and Annual Runoff Multiple-Year Variation in the Ural River Basin
https://doi.org/10.31857/S2587556620030103
Abstract
This article examines the strength of perennial fluctuations’ relationship in monthly and annual runoffs in the Ural River basin. The norms of monthly and annual runoffs were calculated for the rivers of this basin. Using the wavelet analysis method, trends of their changes and water flow cycles were identified. An estimation of the river flow spatial correlation within the studied river basin was made. On the basis of a periodically correlated process model, the time series was predicted for the selected hydrological seasons. The relationship strength between the monthly average discharge of each month and the average annual water discharge, as well as between the average monthly water discharges were estimated. The statistical significance of the identified correlations was determined. A significantly stronger correlation between the values of the runoff within the year in comparison to that of the interannual was established. The last finding may be due to the long-period oscillation presence in the temporal series that helps manifest the rhythm of the annual and intra-annual cycles. It is proposed to consider the runoff fluctuations in the Ural River basin as a random stochastic process consisting of two components: inertial (trend) and seasonal (oscillating).
About the Authors
D. Yu. Vasil’evRussian Federation
Ufa, Moscow
V. V. Vodopyanov
Russian Federation
Ufa
Sh. I. Zakirzyanov
Russian Federation
Ufa
A. Zh. Kenzhebaeva
Russian Federation
Moscow
V. A. Semenov
Russian Federation
Moscow
Zh. T. Sivokhip
Russian Federation
Orenburg
References
1. Andreyanov V.G. Vnutrigodovoe raspredelenie rechnogo stoka [Intra-annual Distribution of River Flow]. Leningrad: Gidrometeoizdat, 1960. 327 p.
2. Andreyanov V.G. Metodicheskie ukazaniya po rasche-tam vnutrigodovogo raspredeleniya stoka pri stroitel’nom proektirovanii [Guidelines for the Calculation of the Intra-Annual Distribution of Runoff During Construction Design]. Leningrad: Gidrometeoizdat, 1970. 77 p.
3. Andreyanov V.G. Nekotorye utochneniya i uproshcheni-ya metodiki raschetov kalendarnogo vnutrigodovogo raspredeleniya rechnogo stoka primenitel’no k trebovani-yam stroitel’nogo proektirovaniya [Some Clarifications and Simplifications of the Method for Calculating the Calendar Intra-Annual Distribution of River Flow in Relation to the Requirements of Building Design]. Trudy GGI. Leningrad: Gidrometeoizdat, 1966, vol. 134, pp. 80-114.
4. Bendat J., Pirsol A. Prikladnoi analiz sluchainykh dan-nykh [Applied Analysis of Random Data]. Moscow: Mir Publ., 1989. 540 p.
5. Bolgov M.V., Filippova I.A. Threshold stochastic models of low flow. Meteorologiya i Gidrologiya, 2006, no. 3, pp. 88-94. (In Russ.).
6. Borshch S.V., Khristoforov A.V. Gidrometeorologiches-kie prognozy [Hydrometeorological Forecasts]. Trudy GMC of Russia. Moscow: Gidrometeoizdat, 2015, no. 356, pp. 48-100.
7. Vasil’ev D.Yu., Babkov O.K., Davliev I.R., Semenov V.A., Christodulo O.I. Spatio-temporal stricture of surface air temperature fluctuations in the Southern Urals. Optika Atmosfery i Okeana, 2018, vol. 31, no. 4, pp. 294-302. (In Russ.).
8. Vasil’ev D.Yu., Babkov O.K., Kochetkova E.S., Semenov V.A. Wavelet and cross-wavelet analysis of the sums atmospheric precipitation and air temperature in European Russia. Izv. Akad. Nauk, Ser. Geogr., 2017, no. 6, pp. 63-77. (In Russ.).
9. Vasil’ev D.Yu., Velikanov N.V., Vodopyanov V.V., Krasnogorskaya N.N., Semenov V.A., Christodulo O.I. Relationship of the brightness anomalies of the lower troposphere with the climate indices on the Southern Urals. Issledovanie Zemly iz Kosmosa, 2019, no. 2, pp. 14-28. (In Russ.).
10. Vasil’ev D.Yu., Gavra N.K., Kochetkova E.S., Fe-rapontov Yu.I. Correlation between the total precipitation and the mean and maximum runoff during the snowmelt flood in the Belaya River basin. Russian Meteorology and Hydrology, 2013, no. 5, pp. 351-358.
11. Vasil’ev D.Yu., Lukmanov R.L., Ferapontov Yu.I., Chuvyrov A.N. Periodicity in the hydrometeorological parameters of Bashkiria. Doklady Earth Sciences, 2013, vol. 448, no. 1, pp. 131-134. doi: 10.1134/S1028334X12110165
12. Vasil’ev D.Yu., Pavleychik V.M., Semenov V.A., Sivo-hip J.T., Chibilev A.A. The long-term pattern of temperature and precipitation in the Southern Ural. Doklady Earth Sciences, 2018, vol. 478, no. 2, pp. 245-249. doi: 10.7868/S0869565218050201
13. Vasil’ev D.Yu., Sivohip J.T., Chibilev A.A. Climate dynamics and interdecadal discharge fluctuations in the Ural River basin. Doklady Earth Sciences, 2016, vol. 469, no. 1, pp. 710-715. doi: 10.1134/ S1028334X16070096
14. Vasil’ev D.Yu., Ferapontov Yu.I. Trends in the fluctuations of near surface air temperature (a case study of Bashkiria). Izv. Akad. Nauk, Ser. Geogr., 2015, no. 1, pp. 77-86. (In Russ.).
15. Vasil’ev D.Yu., Vodopyanov V.V., Zayzeva G.S., Zakir-zanov Sh.I., Semenov V.A., Sivohip J.T., Chibilev A.A. A long-term forecast model of spring runoff: the case study of the Belaya River. Doklady Earth Sciences, 2019, vol. 486, no. 6, pp. 723-726. doi: 10.1134/ S1028334X19060345
16. Vodnye resursy Rossii i ikh ispol’zovanie [Water Resources of Russia and their Use], Shiklomanov I.A., Ed. St. Petersburg: GGI Publ., 2008. 600 p.
17. Gelfand I.M., Fomin S.V. Variatsionnoe ischislenie [Variational Calculus]. Moscow: Fizmatlit Publ., 1961. 228 p.
18. Dobrovolsky S.G. The problem of global warming and changes in the flow of the Russian rivers. Water Resources, 2007, vol. 34, no. 6, pp. 643-655.
19. Dolgov S.V., Koronkevich N.I. Peculiarites of the Russian plail reivers response to the air temperature change. Izv. Akad. Nauk, Ser. Geogr., 2012, no. 6, pp. 55-62. (In Russ.).
20. Kartvelishvili N.A. Stokhasticheskaya gidrologiya [Stochastic Hydrology]. Leningrad: Gidrometeoizdat, 1975. 162 p.
21. Koronkevich N.I., Barabanova E.A., Zaytseva I.S. The effect of changes in the annual values of air temperature and precipitation on the flow of the rivers of the Russian Plain. Izv. Akad. Nauk, Ser. Geogr., 2007, no. 5, pp. 64-70. (In Russ.).
22. Myakisheva NV, Goyuy Ch. Rhythmic annual cyclicality of hydrological processes in areas with intensive economic activity. Vestn. St.Petersburg Univ. Ser. 7, 2011, vol. 1, pp. 98-106.
23. Myakisheva N.V., Trapeznikov Yu.A. Avtoregression-naya model' mezhgodovoi izmenchivosti gidrometeorolo-gicheskikh protsessov [Autoregressive Model of Interannual Variability of Hydrometeorological Processes], Probabilistic analysis and modeling of oceanological processes. Leningrad: Gidrometeoizdat, 1984, pp. 31-39.
24. Muzylev S.V., Privalsky V.E. Stokhasticheskie modeli v inzhenernoi gidrologii [Stochastic Models in Engineering Hydrology]. Moscow: Nauka Publ., 1982. 184 p.
25. Ratkovich D.Ya. Mnogoletnie kolebaniya rechnogo sto-ka: zakonomernosti i regulirovanie [Perennial Fluctuations in River Flow: Patterns and Regulation]. Leningrad: Gidrometeoizdat, 1976. 255 p.
26. Ratkovich D.Ya., Bolgov M.V. Stokhasticheskie modeli kolebanii sostavlyayushchikh vodnogo balansa rechnogo basseina [Stochastic Models of Oscillations of the Components of the Water Balance of a River Basin]. Moscow: IWP RAS Publ., 1997. 261 p.
27. Rozhkov V.A. Teoriya i metody statisticheskogo otsenivaniya veroyatnostnykh kharakteristik sluchainykh velichin i funktsii [Theory and Methods of Statistical Estimation of Probability Characteristics of Random Variables and Functions]. St. Petersburg: Gidromete-oizdat, 2001. 340 p.
28. Rumyantsev V.A., Trapeznikov Yu.A. Stokhasticheskie modeli gidrologicheskikh protsessov [Stochastic Models of Hydrological Processes]. St. Petersburg: Gidrometeoizdat, 2008. 152 p.
29. Svanidze G.G. Matematicheskoe modelirovanie gidro-logicheskikh ryadov [Mathematical Modeling of Hydrological Series]. Leningrad: Gidrometeoizdat, 1977. 293 p.
30. Certificate of state registration of computer programs 2018661796. Russian Federation. Realization of the method of the periodically correlated cyclostationary processes, case study of the river. Vasil’ev D.Yu., Vodopyanov V.V., Zakirzyanov Sh.N.; copyright holder: Ufa State Aviation Technical University - № 20186188838; declare 08.17.2018; registered 09.18.2018.
31. Chibilev A.A. Reka Ural [Ural River]. Leningrad: Gidrometeoizdat, 1987. 168 p.
32. Hao Z., Singh V.P. Entropy-copula method for singlesite monthly streamflow simulation. Water Resour., 2012, vol. 48. W06604. doi:10.1029/2011WR011419
33. Ricker Dennis W. Echo Signal Processing. Springer. 2003. 240 p.
34. Salvadori G., Michele C.D. Multivariate multiparameter extreme value models and return periods: a copula approach. Water Resour., 2010, vol. 46. W10501. doi:10.1029/2009WR009040
35. Torrence C., Campo G.P. A practical guide to wavelet analysis. Bull. Amer. Meteor. Soc. 1998, vol. 79, pp. 61-78.
36. Wen X., Tang G., Wang S., Hnang J. Comparison of global mean temperature series. Advances in Climate Change Research, 2011, vol. 2, no. 4, pp. 187-192.
Graphical Abstract
|
1. Динамика среднемесячных расходов воды реки Урал и внутригодовое распределение стока по данным с гидрологического поста г. Оренбург | |
Subject | ||
Type | Исследовательские инструменты | |
View
(836KB)
|
Indexing metadata ▾ |
|
2. Dynamics of the monthly discharge of the Ural River and its intra-annual variations at the Orenburg hydrological station | |
Subject | ||
Type | Исследовательские инструменты | |
View
(643KB)
|
Indexing metadata ▾ |
![]() |
3. PDF | |
Subject | ||
Type | Исследовательские инструменты | |
Download
(3MB)
|
Indexing metadata ▾ |
- Using wavelet analysis, temporal patterns of the hydrological signal were determined.
- A periodically correlated stochastic model of the variations of river runoff is discussed.
- A correlation between the runoff values within the year is significantly stronger in comparison to that of the interannual values.
Review
For citations:
Vasil’ev D.Yu., Vodopyanov V.V., Zakirzyanov Sh.I., Kenzhebaeva A.Zh., Semenov V.A., Sivokhip Zh.T. Correlation of the Monthly and Annual Runoff Multiple-Year Variation in the Ural River Basin. Izvestiya Rossiiskoi Akademii Nauk. Seriya Geograficheskaya. 2020;84(3):414-426. (In Russ.) https://doi.org/10.31857/S2587556620030103