Methods of Dendroindication of Developing Rapid Geomorphic Processes: An Overview
https://doi.org/10.31857/S2587556620030097
Abstract
Since the beginning of the 21st century dendrogeomorphological research are abruptly activated in Western Europe but are appreciable reduced in Russia. In the present foreign literature, the new methods and approaches of dendrogeomorphological research has been developed and discussed. The article goal is an overview of the dendrogeomorphological methods for identifying, dating and reconstructing the geomorphic events (debris flows, avalanches, rockfalls), their advantages and limitations at different stages of a dendro-geomorphological study. The dendrogeomorphological research are based on the J. Shroder’s “process— event-response” concept. The disputable questions and unsolved issues of the dendrogeomorphology are considered.
Keywords
About the Authors
S. A. NikolaevaRussian Federation
Tomsk
D. A. Savchuk
Russian Federation
Tomsk
References
1. Gorchakovskii P.L., Shiyatov S.G. Fitoindikatsiya uslovii sredy i prirodnykh protsessov v vysokogor’yakh [Phytoindication of Environmental Conditions and Nature Processes in Highland Areas]. Moscow: Nauka Publ., 1985. 209 p.
2. Korzhenevskii V.V., Kvitnitskaya A.A. Phytoindication of relief forming and experience of its application. Byull. Nikitskogo Botanicheskogo Sada, 2011, no. 100, pp. 5-28. (In Russ.).
3. Lekhatinov A.M. On the methods of studing the activity of mudflows in mountainous taiga areas. In Selevye potoki: katastrofy, risk, prognoz, zashchita [Debris Flows: Disasters, Risk, Forecast, Protection]. Yuzhno-Sakhalinsk: Sakhalin. Filial. Dalnevost. Geol. Inst. Akad. Nauk, 2014, pp. 43-47. (In Russ.).
4. Nikolaeva S.A., Savchuk D.A., Kuznetsov A.S. Dating of debris flow activity in the Aktru mountain glacier basin (the Altai Mountains). Georisk, 2017, no. 2, pp. 5663. (In Russ.).
5. Shiyatov S.G., Vaganov E.A., Kirdyanov A.V., Kruglov V.B., Mazepa V.S., Naurzbaev M.M., Khantemirov R.M. Metody dendrokhronologii. Ch.1. Osnovy den-drokhronologii. Sbor ipoluchenie drevesno-kol’tsevoi in-formatsii [Methods of Dendrochronology. Part 1. Basics of dendrochronology. Collection and Determination of Tree Ring Information]. Krasnoyarsk: Krasnoyarsk. Gos. Univ., 2000. 80 p.
6. Bollschweiler M., Stoffel M., Schneuwly D. Dynamics in debris-flow activity on a forested cone - a case study using different dendroecological approaches. Catena, 2008, vol. 72, no. 1, pp. 67-78.
7. Bollschweiler M., Stoffel M. Tree rings and debris flows: recent developments, future directions. Prog. Phys. Geogr., 2010, vol. 34, no. 5, pp. 625-645.
8. Butler D.R., Sawyer C.F. Dendrogeomorphology and high-magnitude snow avalanches: a review and case study. Nat. Hazard. Earth Sys. Sci., 2008, vol. 8, pp. 303-309.
9. Chiroiu P. Geomorphological studies of slope processes by the analysis of tree-rings. Central European Regional Policy and Human Geography, 2013, vol. 3, no. 1, pp. 93-105.
10. Corona C., Rovdra G., Lopez Saez J., Stoffel M., Per-fettini P. Spatio-temporal reconstruction of snow avalanche activity using tree rings: Pierres Jean Jeanne avalanche talus, Massif de l’Oisans, France. Catena, 2010, vol. 83, no. 2-3, pp. 107-118.
11. Corona C., Lopez Saez J., Stoffel M., Bonnefoy M., Richard D., Astrade L., Berger F. How much of the real avalanche activity can be captured with tree rings? An evaluation of classic dendrogeomorphic approaches and comparison with historical archives. Cold Reg. Sci. Technol., 2012, vol. 74-75, pp. 31-42.
12. Czajka B., Lajczak A., Kaczka R. The influence of snow avalanches on the timberline in the Babia Cora massif, Western Carpathians. Geogr. Pol., 2015, vol. 88, no. 2, pp. 147-161.
13. Favillier A., Guillet S., Morel P., Corona C., Lopez Saez J., Eckert N., Ballesteros Canovas J., Peiry J.-L., Stoffel M. Disentangling the impacts of exogenous disturbances on forest stands to assess multi-centennial tree-ring reconstructions of avalanche activity in the upper Goms Valley (Canton of Valais, Switzerland). Quat. Geochronol., 2017, vol. 42, pp. 89-104.
14. Kogelnig-Mayer B., Stoffel M., Schneuwly-Bollsch-weiler M., Hubl J., Rudolf-Miklau F. Possibilities and limitation of dendrogeomorphic time-series reconstruction on sites influenced by debris flows and frequent snow avalanche activity. Arct. Antarct. Alp. Res., 2011, vol. 43, no. 4, pp. 649-658.
15. Lopez Saez J., Corona C., Stoffel M., Gotteland A., Berger F., Liebault F. Debris-flow activity in abandoned channels of the Manival torrent reconstructed with LiDAR and tree-ring data. Nat. Hazard. Earth Sys. Sci., 2011, vol. 11, pp. 1247-1257.
16. Malik I., Owczarek P. Dendrochronological records of debris flow and avalanche activity in a mid-mountain forest zone (Eastern Sudetes - Central Europe). Geo-chronometria, 2009, vol. 34, no. 1, pp. 57-66.
17. Malik I., Wistuba M. Dendrochronological methods for reconstructing mass movements - an example of landslide activity analysis using tree-ring eccentricity. Geochronometria, 2012, vol. 39, no. 3, pp. 180-196.
18. Mesesan F., Gavrila I., Pop O. Calculating snow-avalanche return period from tree-ring data. Nat. Hazards, 2018, vol. 94, no. 3, pp. 1081-1098.
19. Schlappy R., Jomelli V., Grancher D., Stoffel M., Corona C., Brunstein D., Eckert N., Deschatres M. A new tree-ring-based, semi-quantitative approach for the determination of snow avalanche events: use of classification trees for validation. Arct. Antarct. Alp. Res., 2013, vol. 45, no. 3, pp. 383-395.
20. Schlappy R., Jomelli V., Eckert N., Stoffel M., Grancher D., Brunstein D., Corona C., Deschatres M. Can we infer avalanche-climate relations using tree-ring data? Case studies in the French Alps. Reg. Environ. Change, 2016, vol. 16, no. 3, pp. 629-642.
21. Schweingruber F.H. Tree Rings and Environment. Den-droecology. Berne, Stuttgard, Vienna: Paul Haupt Publ., 1996. 609 p.
22. Shroder J.F. Dendrogeomorphology; review and new techniques of tree-ring dating. Prog. Phys. Geogr., 1980, vol. 4, no. 2, pp. 161-188.
23. Solomina O.N. Dendrogeomorphology: research requirements. Dendrochronologia, 2002, vol. 20, no. 1-2, pp. 233-245.
24. Sorg A., Bugmann H., Bollschweiler M., Stoffel M. Debris-flow activity along a torrent in the Swiss Alps: Minimum frequency of events and implications for forest dynamics. Dendrochronologia, 2010, vol. 28, no. 4, pp. 215-223.
25. Stoffel M. A review of studies dealing with tree rings and rockfall activity: the role of dendrogeomorphology in natural hazard research. Nat. Hazards, 2006, vol. 39, no. 1, pp. 51-70.
26. Stoffel M. Dating past geomorphic processes with tangential rows of traumatic resin ducts. Dendrochronologia, 2008, vol. 26, no. 1, pp. 53-60.
27. Stoffel M., Bollschweiler M. Tree-ring analysis in natural hazards research - an overview. Nat. Hazard. Earth Sys. Sci., 2008, vol. 8, pp. 187-202.
28. Stoffel M., Bollschweiler M. Tree-ring reconstruction of past debris flows based on a small number of samples -possibilities and limitations. Landslides, 2009, vol. 6, no. 3, pp. 225-230.
29. Stoffel M., Bollschweiler M., Widmer S., Sorg A. Spatio-temporal variability in debris-flow activity: a treering study at Geisstriftbach (Swiss Alps) extending back to AD 1736. Swiss J. Geosci., 2010, vol. 103, no. 2, pp. 283-292.
30. Stoffel M., Corona C. Dendroecological dating of geomorphic disturbance in trees. Tree-Ring Res., 2014, vol. 70, no. 1, pp. 3-20.
31. Trappmann D., Corona C., Stoffel M. Rolling stones and tree rings: A state of research on dendrogeomor-phic reconstructions of rockfall. Prog. Phys. Geogr., 2013, vol. 37, no. 5, pp. 701-716.
32. Trappmann D., Stoffel M. Counting scars on tree stems to assess rockfall hazards: A low effort approach, but how reliable? Geomorphology, 2013, vol. 180, pp. 180-186.
33. Tumajer J., Treml V Meta-analysis of dendrochrono-logical dating of mass movements. Geochronometria, 2013, vol. 40, no. 1, pp. 59-76.
34. Tumajer J., Treml V. Reconstruction ability of dendrochronology in dating avalanche events in the Giant Mountains, Czech Republic. Dendrochronologia, 2015, vol. 34, pp. 1-9.
Supplementary files
|
1. Методы дендроиндикационного исследования на подготовительном этапе, на полевом этапе (на модельных участках), на лабораторном этапе и при пространственно-временной реконструкции событий | |
Subject | ||
Type | Исследовательские инструменты | |
View
(38KB)
|
Indexing metadata ▾ |
|
2. Dendrogeomorphological methods at the preparatory stage, at the field stage (on sample sites), at the laboratory stage, and for spatial–temporal reconstruction of events | |
Subject | ||
Type | Исследовательские инструменты | |
View
(36KB)
|
Indexing metadata ▾ |
![]() |
3. PDF | |
Subject | ||
Type | Исследовательские инструменты | |
Download
(3MB)
|
Indexing metadata ▾ |
- An overview of the dendrogeomorphological methods for studying past geomorphic events caused by gravitational mass movements, presented in international journals.
- The methods are described stage by stage from preparation to identification, dating, and reconstruction of debris flows, snow avalanches, and rockfalls.
- Advantages, limitations, and problems of the methods at all the stages of a study are a focus of the overview.
- One of the main unsolved problems is an assessment of the intensity of events by qualitative and quantitative criteria.
Review
For citations:
Nikolaeva S.A., Savchuk D.A. Methods of Dendroindication of Developing Rapid Geomorphic Processes: An Overview. Izvestiya Rossiiskoi Akademii Nauk. Seriya Geograficheskaya. 2020;84(3):441-450. (In Russ.) https://doi.org/10.31857/S2587556620030097