COVID-19: Spatial Dynamics and Diffusion Factors across Russian Regions
https://doi.org/10.31857/S2587556620040159
Abstract
Keywords
About the Authors
S. P. ZemtsovRussian Federation
Moscow
V. L. Baburin
Russian Federation
Moscow, Kaliningrad
References
1. Baburin V.L., Zemtsov S.P. Regions-innovators and innovative periphery of Russia. The study of diffusion of innovations on the example of ICT products. Reg. Issled., 2014, no. 3, pp. 27–37. (In Russ.).
2. Baburin V.L., Zemtsov S.P. Innovatsionnyi potentsial regionov Rossii [Innovation Potential of the Russian Regions]. Moscow: KDU Publ., 2017. 356 p.
3. Barinova V.A., Zemtsov S.P., Tsareva Yu.V. Entrepreneurship and institutions: does the relationship exist at the regional level in Russia? Vopr. Ekon., 2018, vol. 6, pp. 92–116. (In Russ.).
4. Blanutsa V.I. Diffusion of postal innovations in pre-Soviet Siberia. Geogr. Prir. Resur., 2012, no. 4, pp. 30–39. (In Russ.).
5. Blanutsa V.I. Spatial diffusion of innovations: the sphere of uncertainty and the network model. Reg. Issled., 2015, no. 3, pp. 4–12. (In Russ.).
6. Zemtsov S.P., Baburin V.L. Assessing the potential of economic-geographical position for Russian regions. Ekonomika Regiona, 2016, vol. 12, no. 1, pp. 117–138. (In Russ.).
7. Zemtsov S., Tsareva Yu. Trends in the development of the sector of small and medium enterprises in a pandemic and crisis. Monitoring Ekon. Situatsii v Rossii: Tendentsii i Vyzovy Sotsial’no-Ekon. Razvitiya, 2020, vol. 112, no. 10, pp. 155–166. (In Russ.).
8. Kaneva M. A. Influence of public health capital on the economic growth of regions of the Russian Federation. Region: Ekonomika i Sotsiologiya, 2019, no. 1, pp. 47–70. (In Russ.).
9. Kosarev V., Pavlov P., Kaukin A. Social capital as a factor in the economic growth of Russian regions. Ekon. Politika, 2019, vol. 14, no. 5, pp. 144–149. (In Russ.).
10. Nazarov V., Sisigina N. Comparative analysis of approaches to testing for COVID-19 coronavirus disease in Russia and foreign countries. Monitoring Ekon. Situatsii v Rossii: Tendentsii i Vyzovy Sotsial’no-Ekon. Razvitiya, 2020, vol. 111, no. 9, pp. 22–38. (In Russ.).
11. Nazarov V.S., Sisigina N.N., Avksent’ev N.A. Approaches to removing the restrictions adopted in order to curb the spread of a new coronavirus infection. Monitoring Ekon. Situatsii v Rossii: Tendentsii i Vyzovy Sotsial’no-Ekon. Razvitiya, 2020, vol. 113, no. 11, pp. 21–31. (In Russ.).
12. Petrov N., Arkhipova A., Spiridonov V., Peigin B. Infodemia: existing approaches to the analysis of panic, phobias, rumors, fakes during epidemics and proposals for dealing with them. Monitoring Ekon. Situatsii v Rossii: Tendentsii i Vyzovy Sotsial’no-Ekon. Razvitiya, 2020, vol. 110, no. 8, pp. 70–78. (In Russ.).
13. Popov V.F. The cholera epidemic in the USSR in 1970. BIOpreparaty. Profilaktika, Diagnostika. 2011, vol. 42, no. 2, pp. 36–38. (In Russ.).
14. Revich B.A. Heatwaves, air quality and mortality in the European part of Russia in the summer of 2010: preliminary assessment results. Ekologiya Cheloveka, 2011, no. 7, pp. 3–9. (In Russ.).
15. Bass F.M. A new product growth for model consumer durables. Manag. Sci., 1969, vol. 15, no. 5, pp. 215–227.
16. Bertrand J.T. Diffusion of innovations and HIV/AIDS. J. Health Commun., 2004, vol. 9, no. S1, pp. 113–121.
17. Chen N., Zhou M., Dong X., Qu J., Gong F., Han Y., Qiu Y., Wang J., Liu Y., Wei Y., Xia J., Yu T., Zhang X., Zhang L. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. The Lancet, 2020, vol. 395, no. 10223, pp. 507–513. doi: 10.1016/S01406736(20)30211-7
18. Comin D.A., Dmitriev M., Rossi-Hansberg E. The Spatial Diffusion of Technology. National Bureau of Economic Research, 2012. 39 p. doi: 10.3386/w18534
19. Grant A. Dynamics of COVID-19 epidemics: SEIR models underestimate peak infection rates and overestimate epidemic duration. Preprint, medRxiv, 2020. doi: 10.1101/2020.04.02.20050674
20. Hagerstrand T. Innovation Diffusion as a Spatial Process. Chicago, USA: Univ. Chicago Press, 1968. 334 p.
21. Hauser A., Counotte M., Margossian C., Konstantinoudis G., Low N., Althaus C., Riou J. Estimation of SARS-CoV-2 mortality during the early stages of an epidemic: a modelling study in Hubei, China and northern Italy. Preprint, medRxiv, 2020. doi: 10.1101/2020.03.04.20031104
22. Kucharski A.J., Russell T.W., Diamond C., Liu Y., Edmunds J., Funk S., Eggo R.M. Early dynamics of transmission and control of COVID-19: a mathematical modelling study. Lancet Infect. Dis., 2020, vol. 20, no. 5, pp. 553–558. doi: 10.1016/S1473-3099(20)30144-4
23. Korolev I. Identification and Estimation of the SEIRD Epidemic Model for COVID-19. SSRN, 2020. Available at: https://ssrn.com/abstract=3569367 (accessed: 12.05.2020). doi: 10.2139/ssrn.3569367
24. Liu Y., Gayle A.A., Wilder-Smith A., Rocklöv J. The reproductive number of COVID-19 is higher compared to SARS coronavirus. J. Travel Med., 2020, vol. 27, no. 2. doi: 10.1093/jtm/taaa021
25. New-Product Diffusion Models. International Series in Quantitative Marketing, vol. 11. Mahajan V., Muller E., Wind Y., Eds. Springer Science & Business Media, 2000. 355 p.
26. Meade N., Islam T. Modelling and forecasting the diffusion of innovation–A 25-year review. Int. J. Forecast., 2006, vol. 22, no. 3, pp. 519–545.
27. Rogers E.M. Diffusion of Innovations. Simon and Schuster, 2010. 518 p.
28. Shet A., Ray D., Malavige N., Santosham M., BarZeev N. Differential COVID-19-attributable mortality and BCG vaccine use in countries. Preprint. 2020. doi: 10.1101/2020.04.01.20049478
29. Wu J.T., Leung K., Leung G.M. Nowcasting and forecasting the potential domestic and international spread of the 2019-nCoV outbreak originating in Wuhan, China: a modelling study. The Lancet, 2020, vol. 395, no. 10225, pp. 689–697.
30. Zemtsov S., Barinova V., Semenova R. The risks of digitalization and the adaptation of regional labor markets in Russia. Foresight and STI Governance, 2019, vol. 13, no. 2, pp. 84–96. doi: 10.17323/2500-2597.2019.2.84.96
31. Zemtsov S., Kotsemir M. An assessment of regional innovation system efficiency in Russia: the application of the DEA approach. Scientometrics, 2019, vol. 120, no. 2, pp. 375–404.
32. Zhao D. Sun J., Tan Y., Wu J., Dou Y. An extended SEIR model considering homepage effect for the information propagation of online social networks. Physica A, 2018, vol. 512, pp. 1019–1031.
Graphical Abstract
![]() |
1. PDF | |
Subject | ||
Type | Исследовательские инструменты | |
Download
(6MB)
|
Indexing metadata ▾ |
Review
For citations:
Zemtsov S.P., Baburin V.L. COVID-19: Spatial Dynamics and Diffusion Factors across Russian Regions. Izvestiya Rossiiskoi Akademii Nauk. Seriya Geograficheskaya. 2020;84(4):485–505. (In Russ.) https://doi.org/10.31857/S2587556620040159