Preview

The Mineralogical and Geochemical Parameters Reflecting the Palaeoenvironment of Soil Formation in the South of the East European Plain in Quaternary

https://doi.org/10.31857/S2587556620040032

Abstract

Reconstructions of the dynamics of soil formation conditions’ climatic parameters in Quaternary in the south of the East European Plain are performed. Reconstructions are based on the study of paleosols as indicators of biosphere evolution on the scale of geological and historical time. The completeness and reliability of paleogeographic reconstructions is determined by the selected research objects, including the paleosols of archaeological sites (kurgans) of the steppe zone of the European part of Russia, as well as loess-soil sections of the Azov region, containing a series of Pleistocene paleosols (the last 800 thousand years). Three independent methods were used to perform quantitative reconstructions of paleoenvironment: 1) magnetic method (magnetic susceptibility of soils) linking the soil “magnetic record” with the previous environmental conditions of the steppes and allowing to obtain quantitative climate characteristics (precipitation, aridity) in the Pleistocene and Holocene; 2) geochemical method based on empirical dependencies of geochemical coefficients of weathering, linking changes in the bulk chemical composition of soil mass and its elements with climate factors, as well as a complex of mineralogical studies; 3) methods of isotopic geochemistry, the isotopic composition of carbon, allowing us to obtain information about the climate regime of the territory, reconstruct some parameters of climate systems. Based on the obtained set of magnetic, geochemical, and isotopic parameters of soils and rocks, the optimal indicators’ set for paleoclimatic reconstructions is proposed. The climatic conditions (paleotemperature, paleoprecipitation, and aridity) of the natural environment of the Eurasian steppes in the Holocene and Pleistocene were modeled.

About the Authors

A. O. Alekseev
Institute of Physicochemical and Biological Problems in Soil Science, Russian Academy of Sciences
Russian Federation
Pushchino


P. I. Kalinin
Institute of Physicochemical and Biological Problems in Soil Science, Russian Academy of Sciences
Russian Federation
Pushchino


T. V. Alekseeva
Institute of Physicochemical and Biological Problems in Soil Science, Russian Academy of Sciences
Russian Federation
Pushchino


V. A. Alekseeva
Lomonosov Moscow State University
Russian Federation
Moscow


References

1. Alekseev A.O., Alekseeva T.V. Oksidogenez zheleza v pochvakh stepnoi zony [Iron Oxidogenesis in Steppe Soils]. Moscow: GEOS Publ., 2012. 204 p.

2. Alekseeva V.A. Micromorphology of quartz grain surface as indicator of glacial sedimentation conditions: Evidence from the Protva River basin. Litologiya i Poleznye Iskopaemye, 2005, vol. 40, no. 5, pp. 420–428. (In Russ.).

3. Velichko A.A. Prirodnyi protsess v pleistotsene [Natural Processes in the Pleistocene]. Moscow: Nauka Publ., 1973. 254 p.

4. Velichko A.A. Aridization trends in southern Russia according to the studies of Semibakli-1 section (Azov region). In Sovremennye problemy aridnykh i semiaridnykh ekosistem yuga Rossii [Modern Problems of Arid and Semiarid Ecosystems of the Southern Russia]. Rostovon-Don: Yuzhn. Nauchn. Tsentr RAN, 2006, pp. 108133. (In Russ.).

5. Paleoklimaty i paleolandshafty vnetropicheskogo prostranstva severnogo polushariya. Pozdnii pleistotsen – golotsen [Paleoclimates and Paleolandscapes of the ExtraTropical Northern Hemisphere in the Late Pleistocene and Holocene]. Velichko A.A., Ed. Moscow: GEOS Publ., 2009. 120 p.

6. Demkin V.A., Ryskov Ya.G., Alekseev A.O., Oleinik S.A., Gubin S.V. Paleopedological analysis of archaeological monuments in the steppe zone. Izv. Akad. Nauk, Ser. Geogr., 1989, no. 6, pp. 40–51. (In Russ.).

7. Demkin V.A. Pochvovedenie i arkheologiya [Soil Science and Archeology]. Pushchino: ONTI NTsBI AN SSSR, 1997. 213 p.

8. Demkin V.A., El’tsov M.V., Alekseev A.O., Alekseeva T.V., Demkina T.S., Borisov A.V. Soil development in the Lower Volga area during the historical period. Pochvovedenie, 2004, vol. 37, no. 12, pp. 13241333.

9. Demkin V.A., Borisov A.V., Alekseev A.O., DemkinaT.S., Alekseeva T.V., Khomutova T.E. Archaeological soil science: New approaches to the study of the history of nature and society. In Pochvovedenie. Istoriya, sotsiologiya, metodologiya [Pedology. History, Sociology, Methodology]. Moscow: Nauka Publ., 2005, pp. 324–330. (In Russ.).

10. Kalinin P.I., Alekseev A.O. Geochemical approach to the analysis of the origin of loess sediments in the southeastern part of the Russian Plain. Vestn. Voronezh. Gos. Univ., Ser. Geol., 2013, no. 2, pp. 53–60. (In Russ.).

11. Kalinin P.I., Alekseev A.O., Savko A.D. Lessy, paleopochvy i paleogeografiya kvartera yugo-vostoka Russkoi ravniny [Loesses, Paleosols, and Paleogeography of the Quaternary Period in the Southeastern Part of the Russian Plain]. Tr. Nauchno-Issled. Inst. Geol., Voronezh. Gos. Univ., no. 58. Voronezh: Voronezh. Gos. Univ., 2009. 140 p.

12. Kalinin P.I., Alekseev A.O. Geochemical characterization of loess-soil complexes on the Terek-Kuma Plain and the Azov-Kuban’ Lowland. Eurasian Soil Sci., 2011, vol. 44, no. 12, pp. 1315–1332.

13. Paleogeograficheskie metody issledovanii. Rekonstruktsiya paleogeograficheskikh sobytii i etapov: Uchebnoe posobie [Paleogeographic Research Methods. Reconstruction of Paleogeographic Events and Stages: a Study Handbook]. Karevskaya I.A., Panin A.V., Eds. Moscow: Mosk. Gos. Univ., 2012. 200 p.

14. Rogov V.V. Characteristic features of particle morphology in the skeleton of cryogenic eluvium. Kriosfera Zemli, 2000, no. 3, pp. 67–74. (In Russ.).

15. Ryskov Ya.G., Demkin V.A., Mergel S.V., Oleinik S.A. Formation of the carbonate profile of dark chestnut soil according to the isotopic composition of carbon and oxygen. Eurasian Soil Science, 1996, vol. 29, no. 9, pp. 992–998.

16. Ryskov Ya.G, Borisov A.V., Ryskova E.A., Oleinik S.A., Demkin V.A. On the relationship between pedogenic and lithogenic carbonates and their dynamics in the profile of steppe soil during the last 4000 years. Pochvovedenie, 1999, vol. 32, no. 3, pp. 263–270.

17. Trofimov V.T. Lessovyi pokrov Zemli i ego svoistva [Loess Cover of the Earth and Its Properties]. Moscow: Mosk. Gos. Univ., 2001. 464 p.

18. Alekseev A.O., Alekseeva T.V., Maher B.A. Magnetic properties and mineralogy of iron compounds in steppe soils. Pochvovedenie, 2003, vol. 36, no. 1, pp. 59–70.

19. Alekseeva T., Alekseev A., Maher B.A., Demkin. V. Late Holocene climate reconstructions for the Russian steppe, based on mineralogical and magnetic properties of buried palaeosols. Palaeogeogr. Palaeoclimatol. Palaeoecol., 2007, vol. 249, pp. 103–127.

20. Alley R.B. The Younger Dryas cold interval as viewed from central Greenland. Quat. Sci. Rev., 2000, vol. 19, pp. 213–226.

21. Cerling T.E., Quade J., Ambrose S.H., Sikes N.E. Fossil soils, grasses, and carbon isotopes from Fort Ternan, Kenia: Grassland or woodland? J. Human Evolution, 1991, vol. 21, no. 4, pp. 295–306.

22. Gallagher T.M., Sheldon N.D. A new paleothermometer for forest paleosols and its implications for Cenozoic climate. Geology, 2013, vol. 41, no. 6, pp. 647–650.

23. Gallet S., Borming J., Masayuki T. Geochemical characterization of the Luochuan loess-paleosol sequence China and paleoclimatic implications. Chemical Geology, 1996, vol. 133, pp. 67–88.

24. Koch P.L. Isotopic reconstruction of past continental environments. Annu. Rev. Earth Planet Sci., 1998, vol. 26, no. 1, pp. 573–613.

25. Krinsley D.H., Doornkamp J.C. Atlas of Quartz Sand Surface Textures. Cambridge: Cambridge Univ. Press, 2011. 102 p.

26. Mahaney W.C. Atlas of Sand Grain Surface Textures and Applications. New York: Oxford Univ. Press, 2002. 237 p.

27. Maher B.A., Alekseev A.O., Alekseeva T.V. Climate dependence of soil magnetism across the Russian steppe: significance for use of soil magnetism as a palaeoclimatic proxy. Quat. Sci. Rev., 2002, vol. 21, pp. 1571–1576.

28. Maher B., Possolo A. Statistical models for use of palaeosol magnetic properties as proxies of palaeorainfall. Global Planet. Change, 2013, vol. 111, pp. 280–287. doi 10.1016/j.gloplacha.2013.09.017

29. Maher, B.A. The magnetic properties of Quaternary aeolian dusts and sediments and their palaeoclimatic significance. Aeolian Res., 2011, vol. 3, no. 2, pp. 87–144.

30. Nesbitt H.W., Young G.M. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature, 1982, vol. 299, pp. 715–717.

31. Nordt L., von Fischer J., Tieszen L. Late quaternary temperature record from buried soils of the North American Great Plains. Geology, 2007, vol. 35, no. 2, pp. 159–162.

32. Retallack G.J. Soils of the Past: An Introduction to Paleopedology. Malden, USA: Blackwell Sci., 2001, 2nd ed. 404 p.

33. Sheldon N.D., Tabor N.J. Quantitative paleoenvironmental and paleoclimatic reconstruction using paleosols. Earth-Sci. Rev., 2009, vol. 95, 1–52.

34. Sheldon N.D., Retallack G.J., Tanaka S. Geochemical climofunctions from North American soils and application to paleosols across the Eocene–Oligocene boundary in Oregon. J. Geol., 2002, vol. 110, no. 6, pp. 687–696.

35. Visser J.N.J., Young G.M. Major element geochemistry and paleoclimatology of the Permo-Carboniferous glacigene Dwyka Formation and post-glacial mudrocks in southern Africa. Palaeogeogr. Palaeoclimatol. Palaeoecol., 1990, vol. 81, pp. 49–57.

36. Vos K., Vandenberghe N., Elsen J. Surface textural analysis of quartz grains by scanning electron microscopy (SEM): From sample preparation to environmental interpretation. Earth-Sci. Rev., 2014, vol. 128, pp. 93–104.

37. Wilson M.A. NMR Techniques and Applications in Geochemistry and Soil Chemistry. New York: Pergamon Press, 1987. 366 p.

38. Woronko B. Frost weathering versus glacial grinding in the micromorphology of quartz sand grains: processes and geological implications. Sediment. Geol., 2016, vol. 335, pp. 103–119.

39. Zech M. Evidence for Late Pleistocene climate changes from buried soils on the southern slopes of Mt. Kilimanjaro, Tanzania. Palaeogeogr. Palaeoclimatol. Palaeoecol., 2006, vol. 242, pp. 303–312.

40. Zech M., Glaser B. Improved compound-specific d13C analysis of n-alkanes for application in palaeoenvironmental studies. Rapid Commun. Mass Sp., 2008, vol. 22, no. 2, pp. 135–142.


Graphical Abstract

1. PDF
Subject
Type Исследовательские инструменты
Download (4MB)    
Indexing metadata ▾

Review

For citations:


Alekseev A.O., Kalinin P.I., Alekseeva T.V., Alekseeva V.A. The Mineralogical and Geochemical Parameters Reflecting the Palaeoenvironment of Soil Formation in the South of the East European Plain in Quaternary. Izvestiya Rossiiskoi Akademii Nauk. Seriya Geograficheskaya. 2020;84(4):562–576. (In Russ.) https://doi.org/10.31857/S2587556620040032

Views: 335


ISSN 2587-5566 (Print)
ISSN 2658-6975 (Online)