Hydrological Regimes of Mountain Glaciers at the Regional Scale
https://doi.org/10.31857/S2587556621030080
Abstract
For the river basins of the snow-glacial type of runoff formation, a scientific and informational basis developed for calculating components of the annual water balance equation (runoff, precipitation, evaporation, dynamic water reserves). It includes: (a) determination of the average and weighted average parameters of quasihomogeneous glacier groups by structuring or classifying the initial set of Ngl glaciers above the hydrological point; (b) recommendations for calculating specific layers of evaporation and precipitation, and average values of air temperature and water vapor pressure in air as a function of altitude; (c) composition of glacier surface types used for calculating water balance during the ablation period; (d) determining ablation, precipitation, and evaporation volumes for Ngl glaciers; (e) results of calculating the averages for 30-year time intervals of the water balance components, which related for 26 Eurasian river basins with glaciers area ranging from 102 to 14113 km2. The deviation of the measured annual runoff from that calculated by the water balance equation ranged from –1.8 to 9.4%.
Keywords
About the Author
V. G. KonovalovRussian Federation
Moscow
References
1. Anderson E.A. A Point Energy and Mass Balance Model of Snow Cover. NOAA Tech. Report. NWS 19. U.S. Department of Commerce, NOAA, NWS, Office of Hydrology, 1976. 150 p.
2. Barri R.G. Pogoda i klimat v gorakh [Mountain Weather and Climate]. Leningrad: Gidrometeoizdat Publ., 1984. 311 p.
3. Bodo B.A. Monthly Discharges for 2400 Rivers and Streams of the former Soviet Union [FSU]. Toronto, 2000, v. 1.0.
4. Borovikova L.N., Denisov Yu.M., Trofimova E.B., Shentsis I.D. Matematicheskoe modelirovanie protsessa stoka gornykh rek [Mathematical Modelling of Runoff Formation Process for Mountain Rivers]. Tr. SANIGMI, vol. 61 (76). Leningrad: Gidrometeozidat, 1973. 151 p.
5. Bulygina O.N., Razuvaev V.N., Korshunova N.N., Shvets N.V. Description of database on monthly values of precipitation, air temperature and vapor pressure in the air at the meteostations of Russia. Database State Registration Certificate No. 2014621485. Available at: http://meteo.ru/data (accessed: 15.03.2021). (In Russ.).
6. Denisov Yu.M. Skhema rascheta gidrografa stoka gornykh rek [Scheme for Calculating the Hydrograph of Mountain River Runoff]. Leningrad: Gidrometeoizdat Publ., 1965. 103 p.
7. Denisov Yu.M., Borovikova L.N., Dzhuraev A.D., Erdyakova I.N. Calculating of snow and ice melting. Tr. SARNIGMI, 1982, vol. 94 (175), pp. 20–39. (In Russ.).
8. Fick S.E., Hijmans R.J. WorldClim 2: new 1 km spatial resolution climate surfaces for global land areas. Int. J. Climatol., 2017, vol. 37, no. 12, pp. 4302–4315.
9. Gardner A.S., Sharp M. Sensitivity of net mass-balance estimates to near-surface temperature lapse rates when employing the degree-day method to estimate glacier melt. Ann. Glaciol., 2009, vol. 50, no. 50, pp. 80–86.
10. Harris I., Jones P.D., Osborn T.J., Lister D.H. Updated high-resolution grids of monthly climatic observations – the CRU TS3.10 Dataset. Int. J. Climatol., 2014, vol. 34, no. 3, pp. 623–642.
11. Hijmans, R.J., Cameron S.E., Parra J.L., Jones P.G., Jarvis A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol., 2005, vol. 25, no. 15, pp. 1965–1978.
12. Hock R. DEBaM and DETIM. Manual. 1999. Available at: https://github.com/regine/meltmodel.git (accessed: 15.03.2021).
13. Hock R., Holmgren B. A distributed surface energy-balance model for complex topography and its application to Stor glacier, Sweden. J. Glaciol., 2005, vol. 51, no. 172, pp. 25–36.
14. Katalog lednikov SSSR [Catalogue of the USSR Glaciers]. Vol. 14, no 3, part 15: Bassein r. Gunt [Gunt River Basin]. Leningrad: Gidrometeoizdat Publ., 1979. 121 p.
15. Katalog lednikov SSSR [Catalogue of the USSR Glaciers]. Leningrad: Gidrometeoizdat Publ., 1967–1976, vol. 8, parts 3, 7–11; vol. 13, no. 2, part 1; vol. 14, no. 1, parts 1, 9, 10; no. 3, parts 1–2, 7–10, 12, 15.
16. Konovalov V.G. Cataloging mountain glaciers and generalizing of their distribution according to remote sensing data. Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli Kosm., 2010, vol. 7, no. 2, pp. 43–54. (In Russ.).
17. Konovalov V.G. Changes and representativeness of mountain glaciation parameters. Led i Sneg, 2020, vol. 60, no. 2, pp. 165–181. (In Russ.).
18. Konovalov V.G. New approach to estimate water output from regional populations of mountain glaciers in Asia. Geogr. Environ. Sustain., 2015, vol. 8, no. 2, pp. 13–29.
19. Konovalov V.G. Raschet i prognoz tayaniya lednikov Srednei Asii [Calculating and Forecast of Glaciers Melting in Central Asia]. Leningrad: Gidrometeoizdat Publ., 1979. 231 p.
20. Konovalov V.G. Snow line and formation of glacier-derived runoff in glacial basins. In 34 Selected Papers on Main Ideas of The Soviet Glaciology, 1940s–1980s. Kotlyakov V.M., Ed. Moscow, 1997, pp. 402–410.
21. Konovalov V.G. Spatial extrapolation and variability of climate characteristics in Central Asia. Izv. Akad. Nauk, Ser. Geogr., 2003, no. 5, pp. 97–106. (In Russ.).
22. Konovalov V.G. Tayanie i stok s lednikov basseinov rek Srednei Azii [Melting and Glaciers Runoff in the Central Asia River Basins]. Leningrad: Gidrometeoizdat Publ., 1985. 237 p.
23. Konovalov V.G., Pimankina N.V. Spatial-temporal change in the components of the water balance on the northern slope of the Zailiysky Alatau. Led i Sneg, 2016, vol. 56, no. 4, pp. 453–371. (In Russ.).
24. Krenke A.N. Massoobmen v lednikovykh sistemakh na territorii SSSR [Mass Transfer in Glacial Systems of the USSR]. Leningrad: Gidrometeoizdat Publ., 1982. 287 p.
25. Kuz’min P.P. Protsess tayaniya snezhnogo pokrova [Melting Process of Snow Cover]. Leningrad: Gidrometeoizdat Publ., 1961. 345 p.
26. Lednik Abramova [Abramov Glacier]. Leningrad: Gidrometeoizdat Publ., 1980. 206 p.
27. Lednik Marukh [Marukh Glacier]. Leningrad: Gidrometeoizdat Publ., 1988. 253 p.
28. Rets E.P., Frolova H.L., Popovnin V.V. Modeling the melting surface of a mountain glacier. Led i Sneg, 2011, vol. 116, no. 4, pp. 24–31. (In Russ.).
29. RGI Consortium. Randolph Glacier Inventory – A Dataset of Global Glacier Outlines: Version 6.0: Technical Report, Global Land Ice Measurements from Space, Colorado, USA. Digital Media. 2017. doi 10.7265/N5-RGI-60
30. Rybak O.O., Rybak E.A., Kutuzov S.S., Lavrent’ev I.I., Morozova P.A. Calibration a mathematical model of the dynamics of Marukh glacier, Western Caucasus. Led i Sneg, 2015, vol. 130, no. 2, pp. 9–20. (In Russ.).
31. Rybak O.O., Rybak E.A., Yaitskaya N.A., Popovnin V.V., Lavrent’ev I.I., Satylkanov R., Zhakeev B. Model studies of the evolution of mountain glaciers by the example of the Sary-tor glacier (Inner Tien Shan). Kriosfera Zemli, 2019, vol. XXIII, no. 3, pp. 33–51. (In Russ.).
32. Toropov P.A., Shestakova A.A., Smirnov A.M., Popovnin V.V. Evaluation of components of the heat balance of the Dzhankuat glacier (Central Caucasus) during the ablation period in 2007–2015. Kriosfera Zemli, 2018, vol. XXII, no. 4, pp. 42–54. (In Russ.).
33. Vilesov E.N. Dinamika i sovremennoe sostoyanie oledeneniya gor Kazakhstana [Dynamics and Current State of Glaciation in the Mountains of Kazakhstan]. Almaty: Kazak Universiteti, 2016. 267 p.
34. Williams M.W., Konovalov V.G. Central Asia Temperature and Precipitation Data, 1879-2003, Version 1. Boulder, Colorado USA: National Snow and Ice Data Center, 2008. doi 10.7265/N5NK3BZ8
35. World Glacier Inventory, Version 1. Boulder, Colorado USA: WGMS, and National Snow and Ice Data Center (comps.), 1999, updated 2012. doi 10.7265/N5/NSIDC-WGI-2012-02
36. Xu C.-Y., Singh V.P. Dependence of evaporation on meteorological variables at different time-scales and intercomparison of estimation methods. Hydrol. Process., 1998, vol. 12, no. 3, pp. 429–442.
37. Zemp M., Hoelzle M., Haeberli W. Six decades of glacier mass-balance observations: A review of the worldwide monitoring network. Ann. Glaciol., 2009, vol. 50, no. 50, pp. 101–111.
Review
For citations:
Konovalov V.G. Hydrological Regimes of Mountain Glaciers at the Regional Scale. Izvestiya Rossiiskoi Akademii Nauk. Seriya Geograficheskaya. 2021;85(3):368-379. (In Russ.) https://doi.org/10.31857/S2587556621030080