Preview

Izvestiya Rossiiskoi Akademii Nauk. Seriya Geograficheskaya

Advanced search

Impact of Climate Change on Ecosystem Services of Forest Lands in the Southern Part of Eastern Siberia

https://doi.org/10.31857/S2587556622010125

Abstract

The features of the transformation of individual components of the natural environment in the south of Eastern Siberia (Republic of Buryatia was analyzed in detail) under the conditions of climate change, which have a critical impact on the ecosystem services of forest lands, have been determined. A system of sequential and complementary methods has been applied, which allows an objective analysis of this impact and its assessment: remote sensing methods, correlation analysis, cartographic method, methods of the concept of total economic value, and “ecosystem-based adaptation.” The air temperature, precipitation, and NDVI trends were calculated for the wet (1982–1999) and dry (2000–2018) periods. Temperature rise, as the most critical parameter of the state of forest lands, is observed for the entire study area; at the same time, zones with low growth rates of surface temperature are interspersed with zones with high growth rates, both in latitudinal and longitudinal directions. The wet period is characterized by positive trends in the amount of precipitation for almost the entire study area. During the dry period, negative dynamics of the amount of precipitation is observed for the predominant part of this territory. The wet season is marked by an almost universal rise in NDVI. During the dry season, forest vegetation is characterized by multidirectional trends in NDVI and precipitation; here the NDVI dynamics is influenced by temperature. These patterns also predetermine changes in the development of ecosystem services of forest lands in the area under consideration. It has been determined that climate change has a negative impact on the predominant part of the ecosystem services of forest lands. The greatest negative impact on these services over a long period of observation (1936–2015) was caused by forest fires, which by the end of this period had significantly increased both in number and in area. A set of measures is considered to facilitate adaptation of forest land management to climate change.

About the Authors

B. Z. Tsydypov
Baikal Institute of Nature Management, Siberian Branch of the Russian Academy of Sciences
Russian Federation

 Ulan-Ude 



E. Zh. Garmaev
Baikal Institute of Nature Management, Siberian Branch of the Russian Academy of Sciences
Russian Federation

 Ulan-Ude 



B. O. Gomboev
Baikal Institute of Nature Management, Siberian Branch of the Russian Academy of Sciences
Russian Federation

 Ulan-Ude 



A. A. Ayurzhanaev
Baikal Institute of Nature Management, Siberian Branch of the Russian Academy of Sciences
Russian Federation

 Ulan-Ude 



B. V. Sodnomov
Baikal Institute of Nature Management, Siberian Branch of the Russian Academy of Sciences
Russian Federation

 Ulan-Ude 



S. D. Puntsukova
Baikal Institute of Nature Management, Siberian Branch of the Russian Academy of Sciences
Russian Federation

 Ulan-Ude 



S. G. Andreev
Baikal Institute of Nature Management, Siberian Branch of the Russian Academy of Sciences
Russian Federation

 Ulan-Ude 



M. A. Motoshkina
Baikal Institute of Nature Management, Siberian Branch of the Russian Academy of Sciences
Russian Federation

 Ulan-Ude 



References

1. Andreev S.G., Garmaev E.Zh., Ayurzhanaev A.A., Batotsyrenov E.A., Gurzhapov B.O. Reconstruction of the water content of rivers and the historical chronicles of extreme natural phenomena of Baikal Asia. Nauchn. Obozrenie, 2016, no. 5, pp. 35–38. (In Russ.).

2. Antokhina O.Yu., Antokhin P.N., Kochetkova O.S., Mordvinov V.I. Summer circulation of the Northern Hemisphere atmosphere in periods of strong and weak East Asian monsoon. Atmos. Ocean. Opt., 2015, vol. 28, no. 3, pp. 258–264. https://doi.org/10.1134/S1024856015030021

3. Bartalev S.A., Egorov V.A., Efremov V.Yu., Loupian E.A., Stytsenko F.V., Flitman E.V. Estimation of the area of fires based on the integration of satellite data of different spatial resolution MODIS and Landsat-TM / ETM+. Sovr. Probl. DZZ Kosm., 2012, vol. 9, no. 2, pp. 9–26. (In Russ.).

4. Bartalev S.A., Egorov V.A., Krylov A.M., Stytsenko F.V., Khovratovich T.S. Investigation of the possibilities of assessing the state of forest damaged by fires according to multispectral satellite measurements. Sovr. Probl. DZZ Kosm., 2010, vol. 7, no. 3, pp. 215–225. (In Russ.).

5. Bartalev S.A., Loupian E.A., Stytsenko F.V., Panova O.Yu., Efremov V.Yu. Express mapping of forest fire damage in Russia using Landsat satellite data. Sovr. Probl. DZZ Kosm., 2014, vol. 11, no. 1, pp. 9–20. (In Russ.).

6. Bobylev S.N., Minakov V.S., Solov’eva S.V., Tret’yakov V.V. Ekologo-ekonomicheskii indeks regionov RF. Metodika i pokazateli dlya rascheta [Ecological and Economic Index of the Regions of the Russian Federation. Methodology and Indicators for the Calculation]. WWF Rossii, RIA Novosti, 2012. 150 p.

7. Borisova T.A. Forest fires in the Republic of Buryatia: causes and consequences. Vestn. VGU. Ser. Geogr., Geoekol., 2017, no. 2, pp. 78–84. (In Russ.).

8. Bulygina O.N., Razuvaev V.N., Korshunova N.N., Shvets N.V. Description of the data array of monthly precipitation amounts at Russian stations. Patent of the Russian Federation for the Database no. 2015620394. Patent holder: All-Russian Research Institute of Hydrometeorological Information – World Data Center. 2015. (In Russ.).

9. Chernykh V.N., Bondarenko D.V., Ayusheeva D.M., Radnaeva B.B. Pine nut harvesting as a factor of degradation of cedar forests in mountain-taiga landscapes of Transbaikalia (on example of the taiga ridge TsaganDaban). Vestn. Buryatskogo Gos. Univ. Biol., Geogr., 2019, no. 3, pp. 44–51. (In Russ.).

10. Connecting Biodiversity and Climate Change Mitigation and Adaptation: Report of the Second Ad Hoc Technical Expert Group on Biodiversity and Climate Change. CBD Technical Series no. 41. Montreal: Secretariat of the Convention on Biological Diversity, 2009. 126 p.

11. Curtis P.G., Slay C.M., Harris N.L., Tyukavina A., Hansen M.C. Classifying drivers of global forest loss. Science, 2018, vol. 361, no. 6407, pp. 1108–1111. https://doi.org/10.1126/science.aau3445

12. Dabaeva D.B., Tsydypov B.Z., Ayurzhanaev A.A., Andreev S.G., Garmaev Y.Zh. Peculiarities of Lake Baikal water level regime. IOP Conf. Ser. Earth Environ. Sci., 2016, vol. 48, 012014. https://doi.org/10.1088/1755-1315/48/1/012014

13. Doklad ob osobennostyakh klimata na territorii Rossiiskoi Federatsii za 2018 god [A Report on Climate Features on the Territory of the Russian Federation in 2018]. Moscow: Rosgidromet, 2019. 79 p.

14. Dorzhiev Ts.Z., Bao Y., Badmaeva E.N., Batsaihan V., Urbazaev Ch.B., Yushan Y. Forest fires in Republic of Buryatia for 20022016. Priroda Vnutrennei Azii, 2017, no. 3(4), pp. 22–37. (In Russ.).

15. Ekosistemnye uslugi Rossii: Prototip natsional’nogo doklada [Ecosystem Services of Russia: Prototype of the National Report]. Vol. 1: Uslugi nazemnykh ekosistem [Services of Terrestrial Ecosystems]. Moscow: Tsentr Okhrany Dikoi Prirody, 2016. 148 p.

16. Ekosistemnye uslugi Rossii: Prototip natsional’nogo doklada [Ecosystem Services of Russia: Prototype of the National Report]. Vol. 2: Bioraznoobrazie i ekosistemnye uslugi: printsipy ucheta v Rossii [Biodiversity and Ecosystem Services: Accounting Principles in Russia]. Moscow: Tsentr Okhrany Dikoi Prirody, 2020. 252 p.

17. Escuin S., Navarro R., Fernandez P. Fire severity assessment by using NBR (Normalized Burn Ratio) and NDVI (Normalized Difference Vegetation Index) derived from Landsat TM/ETM images. Int. J. Remote Sens., 2008, vol. 29, no. 4, pp. 1053–1073.

18. Evdokimenko M.D., Ivanov V.V. Specifics of fire preventing arrangements in the forests of Baikal region. Sib. Lesnoi Zh., 2017, no. 5, pp. 63–75. (In Russ.). https://doi.org/10.15372/SJFS20170506

19. Garmaev E.Z., Tsydypov B.Z., Dabaeva D.B., Andreev S.G., Ayurzhanaev A.A., Kulikov A.I. The Lake Baikal level regime: retrospection and current status. Vodnoe Khozyaistvo Rossii: Problemy, Tekhnologii, Upravlenie, 2017, no. 2, pp. 4–18. (In Russ.).

20. Garmaev E.Zh., Ayurzhanaev A.A., Tsydypov B.Z. et al. Assessment of the spatial and temporal variability of arid ecosystems in the Republic of Buryatia. Arid Ecosyst., 2020, vol. 10, pp. 114–122. https://doi.org/10.1134/S2079096120020055

21. Global Forest Resources Assessment 2015. Desk Reference. Rome: FAO, 2015. 244 p.

22. Gosudarstvennyi doklad “O sostoyanii i ob okhrane okruzhayushchei sredy Rossiiskoi Federatsii v 2017 godu” [State Report “On the State and Protection of the Environment of the Russian Federation in 2017”]. Moscow: Minprirody Rossii, NPP “Kadastr”, 2018. 888 p.

23. Hansen M.C., Potapov P.V., Moore R. et al. High-resolution global maps of 21st-century forest cover change. Science, 2013, vol. 342, no. 6160, pp. 850–853. https://doi.org/10.1126/science.1244693

24. Harris I., Jones P.D., Osborn T.J., Lister D.H. Updated high-resolution grids of monthly climatic observations – the CRU TS3.10 Dataset. Int. J. Climatol., 2014, vol. 34, no. 3, pp. 623–642. https://doi.org/10.1002/joc.3711

25. Kalnay E. et al. The NCEP/NCAR 40-year reanalysis project. Bull. Am. Meteorol. Soc., 1996, vol. 77, no. 3, pp. 437–470.

26. Kasischke E.S., Turetsky M.R., Ottmar R.D., French N.H.F., Hoy E.E., Kane E.S. Evaluation of the composite burn index for assessing fire severity in Alaskan black spruce forests. Int. J. Wildland Fire, 2008, vol. 17, pp. 515–526.

27. Keenan R.J., Reams G.A., Achard F., Freitas J.V., Grainger A., Lindquist E. Dynamics of global forest area: Results from the FAO Global Forest Resources Assessment. For. Ecol. Manag., 2015, vol. 352, pp. 9–20. https://doi.org/10.1016/j.foreco.2015.06.014

28. Kokorin A.O. Izmenenie klimata: obzor Pyatogo otsenochnogo doklada MGEIK [Climate Change: Review of the Fifth Assessment Report of the IPCC]. Moscow: WWF, 2014. 80 p.

29. Loboda T., O’Neal K.J., Csiszar I. Regionally adaptable dNBR-based algorithm for burned area mapping from MODIS data. Remote Sens. Environ., 2007, vol. 109, no. 4, pp. 429–442.

30. Medvedeva M.A., Savin I.Yu., Bartalev S.A., Lupyan E.A. Using NOAA-AVHRR data to identify long-term dynamics of vegetation of the Northern Eurasia. Issled. Zemli Kosm., 2011, no. 4, pp. 55–62. (In Russ.).

31. Millennium Ecosystem Assessment. Ecosystems and Human Well-being. Synthesis Report. Washington D.C.: Island Press, 2005. 160 p.

32. Obyazov V.A. Regional response of surface air temperature to global changes (case study of Transbaikalia). Dokl. Akad. Nauk, 2015, vol. 461, no. 4, pp. 459–462. (In Russ.).

33. Obyazov V.A., Smakhtin V.K. The Transbaikalia rivers’ many-year runoff regime: analysis and background forecast. Vodnoe Khozyaistvo Rossii: Problemy, Tekhnologii, Upravlenie, 2012, no. 1, pp. 63–72. (In Russ.). https://doi.org/10.7868/S0869565215100217

34. Pagiola S., von Ritter K., Bishop J. How Much is an Ecosystem Worth? Assessing the Economic Value of Conservation. Washington D.C.: World Bank, 2004. https://doi.org/10.1596/0-8213-6378-6

35. Schepaschenko D.G., Shvidenko A.Z., Lesiv M.Y., Kraxner F., Ontikov P.V., Shchepashchenko M.V. Estimation of forest area and its dynamics in Russia based on synthesis of remote sensing products. Contemp. Probl. Ecol., 2015, vol. 8, no. 7, pp. 811–817. https://doi.org/10.1134/S1995425515070136

36. Shufang Y., Plotnikova G.P., Simonyan S.H. Perspective development of wood processing of the Siberian Federal District: interaction of China and Russia. Sistemy. Metody. Tekhnologii, 2018, vol. 39, no. 3, pp. 116–124. (In Russ.). https://doi.org/10.18324/2077-5415-2018-3-116-124

37. Sidorov A.A., Sanzhieva S.E. The chronology of forest fires in the Republic of Buryatia. Vestn. KrasGAU, 2018, vol. 139, no. 4, pp. 204–208. (In Russ.).

38. Sodnomov B.V., Ayurzhanaev A.A., Chernykh V.V., Zharnikova M.A. Forest cover loss in the Republic of Buryatia in the 21st century. Usp. Sovrem. Estestvozn., 2020, no. 10, pp. 44–49. (In Russ.). https://doi.org/10.17513/use.37489

39. Sodnomov B.V., Ayurzhanaev A.A., Tsydypov B.Z., Garmaev E.Zh. Algorithm of assessment of the MODIS NDVI long-term variations. Zh. SFU. Tekhnika i Tekhnologii, 2018, vol. 11, no. 1, pp. 61–68. (In Russ.). https://doi.org/10.17516/1999-494X-0009

40. Stavnikov D. Analysis of sanitary and forest pest status of forests in Buryatia. Vestn. Buryatskoi Gos. S-Kh. Akad., 2013, no. 2, pp. 67–73. (In Russ.).

41. Stytsenko F.V., Bartalev S.A., Egorov V.A., Loupian E.A. Method for assessing the degree of forest damage by fires based on MODIS satellite data. Sovr. Probl. DZZ Kosm., 2013, vol. 10, no. 1, pp. 254–266. (In Russ.).

42. Stytsenko F.V., Bartalev S.A., Egorov V.A., Loupian E.A. Method for assessing the degree of forest damage by fires based on MODIS satellite data. Sovr. Probl. DZZ Kosm., 2013, vol. 10, no. 1, pp. 254–266. (In Russ.).

43. Tishkov А.А. Biosphere functions and ecosystem services of landscapes within the steppe zone of russia. Arid Ecosyst., 2010, vol. 10, no. 1, pp. 5–15. (In Russ.).

44. Tucker C.J., Pinzon J.E., Brown M.E., Slayback D.A., Pak E.W., Mahoney R., Vermote E.F., El Saleous N. An extended AVHRR 8-km NDVI dataset compatible with MODIS and SPOT vegetation NDVI data. Int. J. Remote Sens., 2005, vol. 26, no. 20, pp. 4485–4498.

45. Vtoroi otsenochnyi doklad Rosgidrometa ob izmeneniyakh klimata i ikh posledstviyakh na territorii Rossiiskoi Federatsii [The Second Assessment Report of Roshydromet on Climate Changes and Their Consequences on the Territory of the Russian Federation]. Moscow: Rosgidromet, 2014. 1009 p.

46. Zolotokrylin A.N. Indicator of climate aridity. Arid. Ekosist., 2002, vol. 8, no. 16, pp. 47–69. (In Russ.).


Review

For citations:


Tsydypov B.Z., Garmaev E.Zh., Gomboev B.O., Ayurzhanaev A.A., Sodnomov B.V., Puntsukova S.D., Andreev S.G., Motoshkina M.A. Impact of Climate Change on Ecosystem Services of Forest Lands in the Southern Part of Eastern Siberia. Izvestiya Rossiiskoi Akademii Nauk. Seriya Geograficheskaya. 2022;86(1):82-97. (In Russ.) https://doi.org/10.31857/S2587556622010125

Views: 520


ISSN 2587-5566 (Print)
ISSN 2658-6975 (Online)