Assessment of Soil Respiration with the Raich−Hashimoto Model: Parameterisation and Prediction
https://doi.org/10.31857/S2587556622030153
Abstract
Respiration or emission of CO2 from soil is the most powerful outgoing f lux of carbon in terrestrial ecosystems, which makes its accurate assessment and prediction one of the most important biospheric goals. Among the multitude of regression models evaluating soil respiration, we chose the accessible and widespread T&P (Raich-Hashimoto) model, which was applied to describe the available long-term series of observations of CO2 emissions in ecosystems of the southern taiga and forest-steppe of the European part of Russia. The objects of the study were different local biotopes: meadow steppe, young fallow, and ash forest on typical chernozems of Kursk oblast, spruce forest, and its decay areas on sod-podzols, and peat bog soils in Novgorod oblast. According to the results of parameterization, the rates of soil respiration at 0оC were 1.06 to 1.54 times higher than the initial values of the Reich-Hashimoto model, the power coefficients of temperature function were 1.04 to 1.41 times greater, while the coefficients of dependence on precipitation were changed in 0.87 to 0.99 times for both geographic subzones. The corrected versions of the model showed good convergence with the results of field measurements in estimates of annual respiration rates. According to the predictions, under the current rate of increase of air temperature and the current precipitation, CO2 emissions from sod-podzols in Novgorod oblast will increase by 1.4–2.9% over 10 years, while respiration of typical chernozems in Kursk oblast will increase by 0.3–3.8%. The model shows good plasticity with respect to zonal soil types and specific ecosystems, and it is suitable for long-term forecast and retrospective analysis of annual CO2 soil efflux.
Keywords
About the Authors
O. E. SukhoveevaRussian Federation
Moscow.
D. V. Karelin
Russian Federation
Moscow.
References
1. Alferov А.М., Blinov V.G., Gitarskii M.L, Grabar' V.A., Zamolodchikov D.G., Zinchenko А.У, Ivanova N.P., Ivakhov V.M., Karaban R.T., Karelin D.V., Kalyuzhnyi I.L., Kashin F.V., Konyushkov D.E., Korotkov V.N., Korotintsev V.A., Marunich A.S., Paramonova N.N., Romanovskaya A.A., Trunov A.A., Shilkin A.V., Yuzbekov A.K. Monitoring potokov parnikovikh gazov v prirodnikh ekosistemakh [Monitoring of Greenhouse Gas Fluxes in Natural Ecosystems]. Zamolodchikov D.G., Karelin D.V., Gitarskii M.L., Blinov V.G., Eds. Saratov: Amirit Publ., 2017. 279 p.
2. Andreeva E.N., Balun O.V., Zhuravleva O.S., Kataeva O.A., Konechnaya G.U., Krupkina L.I., Yurova E.A. Kadastr flori Novgorodskoy oblasti [Flora Cadaster of Novgorod Oblast]. Veliky Novgorod: Lema Publ., 2009. 276 p.
3. Bond-Lamberty B., Thompson A. Temperature associated increases in the global soil respiration record. Nature, 2010, vol. 464, pp. 579-582. https://doi.org/10.5194/bg-7-1915-2010
4. Carey J.C., Tang J., Templer P.H., et al. Temperature response of soil respiration largely unaltered with experimental warming. PNAS, 2016, vol. 113 (48), pp. 13797-13802. https://doi.org/10.1073/pnas.1605365113
5. Chen S., Huang Y., Zou J., Shen Q., Hu Z., Qin Y., Chen H., Pan G. Modeling interannual variability of global soil respiration from climate and soil properties. Agric. For. Meteorol., 2010, vol. 150, no. 4, pp. 590-605. https://doi.org/10.1016/j.agrformet.2010.02.004
6. Chen S., Zou J., Hu Z., Lu Y. Temporal and spatial variations in the mean residence time of soil organic carbon and their relationship with climatic, soil and vegetation drivers. Glob. Planet. Change, 2020, vol. 195, 103359. https://doi.org/10.1016/j.gloplacha.2020.103359
7. Golubyatnikov L.L., Kurganova I.N., Lopes de Gerenyu V.O. Estimation of C-CO2 balance of natural steppe ecosystems: Khakassia and Tuva (Eastern Siberia, Russia) case studies. IOP Conf. Ser.: Earth Environ. Sci., 2020, vol. 606, 012013. https://doi.org/10.1088/1755-1315/606/1/012013
8. Hanson P.J., Edwards N.T., Garten C.T., Andrews J.A. Separating root and soil microbial contributions to soil respiration: A review of methods and observations. Biogeochemistry, 2000, vol. 48, no 1, pp. 115-146. https://doi.org/10.1023/A:1006244819642
9. Hashimoto S., Carvalhais N., Ito A., Migliavacca M., Nishina K., Reichstein M. Global spatiotemporal distribution of soil respiration modeled using a global database. Biogeosciences, 2015, vol. 12, pp. 4121-4132. https://doi.org/10.5194/bg-12-4121-2015
10. Karelin D.V., Azovskii A.I., Kumanyaev A.S., Zamolod-chikov D.G. Role of spatial and temporal scales in factor studies of soil СО2 fluxes in forests of Valdai Hills. Lesovedenie, 2019, no. 1, pp. 29-37. (In Russ.). https://doi.org/10.1134/S0024114819010078
11. Karelin D.V., Zamolodchikov D.G., Shilkin A.V., Popov S.Yu., Kumanyaev A.S., Lopes de Gerenyu V.O., Tel'nova N.O., Gitarskiy M.L. The effect of tree mortality on CO2 fluxes in an old-growth spruce forest. Eur. J. For. Res., 2021, vol. 140, no. 2, pp. 287-305. https://doi.org/10.1007/s10342-020-01330-3
12. Kurganova I.N., Lopes de Gerenyu V.O., Khoroshaev D.A., Myakshina T.N., Sapronov D.V., Zhmurin V.A., Kudeyarov V.N. Аnalysis of the long-term soil respiration dynamics in the forest and meadow cenoses of the Prioksko-Terrasny biosphere reserve in the perspective of current climate trends. Eurasian Soil Sci., 2020, vol. 53, no. 10, pp. 1421-1436. https://doi.org/10.1134/S1064229320100117
13. Kurganova I.N., Lopes de Gerenyu V.O., Myakshina T.N., Sapronov D.V., Romashkin I.V., Zhmurin V.A., Kudeyarov V.N. Experimental and model estimates of respiration of the forest sod-podzolic soil in the Prioksko-Terrasny nature reserve. Contemp. Prob. Ecol., 2020, vol. 13, pp. 813-824. https://doi.org/10.1134/S1995425520070057
14. Meyer N., Welp G., Amelung W. The temperature sensitivity (Q10) of soil respiration: Controlling factors and spatial prediction at regional scale based on environmental soil classes. Glob. Biogeochem. Cycles, 2018, vol. 32, pp. 306-323. https://doi.org/10.1002/2017GB005644
15. Raich J.W., Potter C.S. Global patterns of carbon dioxide emission from soils. Glob. Biogeochem. Cycles, 1995, vol. 9, pp. 23-36.
16. Raich J.W., Potter C.S., Bhagawati D. Interannual variability in global soil respiration, 1980-94. Glob. Change Biol., 2002, vol. 8, no. 8, pp. 800-812. https://doi.org/10.1046/j.1365-2486.2002.00511.x
17. Reichstein M., Rey A., Freibauer A., Tenhunen J., Valentini R., Banza J., Casals P., Cheng Y., Grunzweig J.M., Irvine J., Joffre R., Law B.E., Loustau D., Miglietta F., Oechel W., Ourcival J.-M., Pereira J.S., Peressotti A., Ponti F., Qi Y., Rambal S., Rayment M., Romanya J., Rossi F., Tedeschi V., Tirone G., Xu M., Yakir D. Modeling temporal and large-scale spatial variability of soil respiration from soil water availability, temperature and vegetation productivity indices. Glob. Biogeochem. Cycles, 2003, vol. 17 (4), 1104. https://doi.org/10.1029/2003GB002035
18. Ruane A.C., McDermid S.P. Selection of a representative subset of global climate models that captures the profile of regional changes for integrated climate impacts assessment. Earth Perspectives, 2017, vol. 4, 1. https://doi.org/10.1186/s40322-017-0036-4
19. Smol'yaninov V.M., Starodubtsev P.P. Kompleksnaya melioratsiya i oroshenie zemel' v Tsentral'no-Chernozemnom regione: sostoyanie, usloviya razvitiya [Complex Land Melioration and Irrigation in Central Chernozem Region: Status and Conditions for Development]. Voronezh: Istoki Publ., 2011. 179 p.
20. Tsei R., Shumafov M.M. Mathematical modelling and invers problems. Vestn. Adyg. Gos. Univ., Ser. 4: Estestven-no-Matem. i Tekhn. Nauki, 2008, no. 4, pp. 18-24. (In Russ.).
21. Zhou T., Shi P., Hui D., Luo Y. Global pattern of temperature sensitivity of soil heterotrophic respiration (Q10) and its implications for carbon-climate feedback. J. Geophys. Res., 2009, vol. 114, G02016. https://doi.org/10.1029/2008JG000850
Review
For citations:
Sukhoveeva O.E., Karelin D.V. Assessment of Soil Respiration with the Raich−Hashimoto Model: Parameterisation and Prediction. Izvestiya Rossiiskoi Akademii Nauk. Seriya Geograficheskaya. 2022;86(4):519-527. (In Russ.) https://doi.org/10.31857/S2587556622030153