Preview

Izvestiya Rossiiskoi Akademii Nauk. Seriya Geograficheskaya

Advanced search

Changes in Intensity of Daily Surface Air Temperature Variations in Different Intramonthly Variability Ranges from Russian Meteorological Stations in 1970–2018

https://doi.org/10.31857/S2587556622030049

Abstract

The variability of daily surface air temperature in Russia is investigated using meteorological station data for 1970–2018. Four variability ranges are analysed: intramonthly (<30 days), interdaily (<3 days), synoptic (4– 9 days), and the range of persistent weather regimes (10–30 days). Standard deviations are estimated for the reference (1970–1999) and modern (2000–2018) climatic periods for all seasons. During the modern period, the variability of average daily surface air temperature decreases (in general by 10–20%) while the average seasonal temperature increases. The largest variability decrease (33–37%) is found in spring and autumn to the Far East and the southeastern part of European Russia. In the European North of Russia in winter and autumn, average mean seasonal temperature increased by 4–5oС. In winter, the largest decrease of temperature variability (18–23%) in all ranges is in central and north-western regions of the European Russia. The variability increase is revealed in the southern areas of Russia. In winter, the increase is the largest (16%) in the southern regions of Siberia in the range of persistent weather regimes. In other seasons, the increase of variability is found in the interdaily variability range in the European Russia in spring (20%) and autumn (17%), and the East Siberia in summer (14%). In general, there is a prevailing tendency towards a decrease of intramonthly surface air temperature variability in Russia for the last 50 years.

About the Authors

E. D. Babina
Institute of Geography, Russian Academy of Sciences
Russian Federation

Moscow.



V. A. Semenov
Institute of Geography, Russian Academy of Sciences; Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences
Russian Federation

Moscow.



References

1. Alekseev G.V. Arctic dimension of global warming. Led i Sneg, 2014, vol. 54, no. 2, pp. 53-68. (In Russ.).

2. Аstakhov N.V., Bashkirov А.У., Zhurilova О.Е., Маkarov О.Уи. Time-frequency analysis, wavelettransform, windowed fourier transform. Radiotekhnika, 2019, no. 6 (8), pp. 109-112. (In Russ.).

3. Babina E.D., Semenov V.A. Intramonthly variability of daily surface air temperature in Russia in 1970-2015. Russ. Meteorol. Hydrol., 2019, vol. 44, pp. 513-522.

4. Bardin M.Yu., Platova T.V. Changes in temperature and precipitation extreme thresholds in Russia during the period of global warming. Probl. Ekol. Monitoringa i Model. Ekosist., 2013, no. 25, pp. 71-93. (In Russ.).

5. Barnes E.A., Dunn-Sigouin E., Masato G., Woollings T. Exploring recent trends in Northern Hemisphere blocking. Geophys. Res. Lett., 2014, vol. 41, no. 2, pp.638-644.

6. Bekryaev R.V., Polyakov I.V., Alexeev V.A. Role of polar amplification in long-term surface air temperature variations and modern Arctic warming. J. Clim., 2010, vol. 23, no. 14, рр. 3888-3906.

7. Borodina A., Fischer E.M., Knutti R. Potential to constrain projections of hot temperature extremes. J. Clim., 2017, vol. 30, no. 24, pp. 9949-9964.

8. Cattiaux J., Douville H., Schoetter R., Parey S., Yiou P. Projected increase in diurnal and interdiurnal variations of European summer temperatures. Geophys. Res. Lett., 2015, vol. 42, no. 3, pp. 899-907.

9. Cheung A.H., Mann M.E., Steinman B.A., Fran-kcombeL.M., England M.H., Miller S.K. Comparison of low frequency internal climate variability in CMIP5 models and observations. J. Clim., 2017, vol. 30, no. 12, pp.4763-4776.

10. Christoph M., Ulbrich U., Haak U. Faster determination of the intraseasonal variability of storm tracks using Murakami's recursive filter. Mon. Weather Rev., 1995, vol. 123, no. 2, pp. 578-581.

11. Cui J., Yang S., Li T. Intraseasonal variability of summertime surface air temperature over mid-high-latitude Eurasia and its prediction skill in S2S models. J. Meteorol. Res., 2021, vol. 35, no. 5, pp. 815-830.

12. Fischer E.M., Rajczak J., Schar C. Changes in European summer temperature variability revisited. Geophys. Res. Lett., 2012, vol. 39, no. 19, pp. 1-8. https://doi.org/10.1029/2012GL052730

13. Fisher E.M., Schar C. Future changes in daily summer temperature variability: driving processes and role for temperature extremes. Clim. Dyn., 2009, vol. 33, no. 7, pp.917-935.

14. Fredriksen H.B., Rypdal K. Spectral characteristics of instrumental and climate model surface temperatures. J. Clim., 2016, vol. 29, pp. 1253-1268.

15. Gough W., Shi B. Impact of coastalization on day-to-day temperature variability along China's East Coast. J. Coast. Res., 2020, vol. 36, no. 3, pp. 451-456.

16. Gruza G.V., Rankova E. Detection of changes in climate state, climate variability, and climate extremity. Russ. Meteorol. Hydrol., 2005, no. 4, pp. 31-43.

17. Gruza G.V., Rankova E. Nabludaemye i ozhidaemye izmeneniya klimata Rossii: temperatura vozdukha [Observed and Expected Climate Changes over Russia: Surface Air Temperature]. Мoscow: VNIIGMI-MTsD, 2012. 193 p.

18. Guo F., Do V., Cooper R., et al. Trends of temperature variability: Which variability and what health implications? Sci. Total Environ., 2021, vol. 768, 144487.

19. Holmes C.R., Woollings T., Hawkins E., De Vries H. Robust future changes in temperature variability under greenhouse gas forcing and relationship with thermal advection. J. Clim., 2016, vol. 29, no. 6, pp. 2221-2236.

20. Kiktev D., Sexton D.M., Alexander L., Folland C.K. Сomparison of modeled and observed trends in indices of daily climate extremes. J. Clim., 2003, vol. 16, pp. 3560-3571.

21. Кiktev D.B., Кruglova Е.N., Кulikova E.А., Мurav’ev А.V. Extreme weather events on seasonal and intraseasonal timescales in the context of climate change. Gidrometerol. Issled. i Prognoz., 2021, no. 1 (379), pp. 36-57. (In Russ.).

22. Kovalenko O.Yu., Bardin M.Yu., Voskresenskaya E.N. Changes in characteristics of air temperature extremes over the Black Sea region and their variability associated with interannual large-scale climatic processes. Fundam. i Priklandn. Climatol., 2017, no. 2, pp. 42-62. (In Russ.).

23. Li S.F., Jiang D.B., Lian Y., Yao Y.X. Trends in day-to-day variability of surface air temperature in China during 1961-2012. Atmos. Ocean. Sci. Lett., 2017, vol. 10, no. 2, pp. 122-129.

24. Loginov S.V., Еliseev А.У, Моkhov I.I. Impact of nongaussian statistics of atmospheric variables on extreme intramonth anomalies. Izv., Atmos. Ocean. Phys., 2017, vol. 53, no. 3, pp. 269-278.

25. Lupo A.R., Oglesby R.J., Mokhov I.I. Climatological features of blocking anticyclones: a study of Northern Hemisphere CCM1 model blocking events in present-day and double CO2 concentration atmospheres. Clim. Dyn., 1997, vol. 13, pp. 181-195.

26. Meehl G.A., Zwiers F., Evans J., Knutson T., Mearns L., Whetton P. Trends in extreme weather and climate events: issues related to modeling extremes in projections of future climate change. Bull. Am. Meteorol. Soc., 2000, vol. 81, no. 3, pp. 427-436.

27. Mitchell J.M. An overview of climatic variability and its causal mechanisms. Quat. Res., 1976, vol. 6, no. 4, pp.481-493.

28. Mokhov I.I., Semenov V.A. Weather and climate anomalies in Russian regions related to global climate change. Russ. Meteorol. Hydrol., 2016, vol. 41, no. 2, pp. 84-92.

29. Mokhov I.I., Timazhev A.V. Model assessment of possible changes of atmospheric blockings in the Northern Hemisphere under RCP scenarios of anthropogenic forcings. Dokl. Earth Sci., 2015, vol. 460, no. 1, pp. 63-67.

30. Polyak I.I. Chislennye metody analiza nabludenii [Numerical Methods of Observation Analysis]. Leningrad: Gidrometeoizdat Publ., 1975. 212 p.

31. Popova V.V. Summertime warming in the European part of Russia and extreme heat in 2010 as manifestation of large-scale atmospheric circulation trends in the late 20th-early 21st centuries. Russ. Meteorol. Hydrol., 2014, vol. 39, no. 3, pp. 159-167.

32. Rubinshtein K.G., Oganesyan V.V., Grachev N.V. Simulation of surface air temperature and its variability. Russ. Meteorol. Hydrol., 2004, no. 12, pp. 30-37.

33. Schar C., Vidale P.L., Luthi D., Frei C., Haberli C., Liniger M.A., Appenzeller C. The role of increasing temperature variability in European summer heatwaves. Nature, 2004, vol. 427, pp. 332-336.

34. Schneider T., Bischoff T., Piotka H. Physics of changes in synoptic midlatitude temperature variability. J. Clim., 2015, vol. 28, no. 6, pp. 2312-2331.

35. Screen J.A. Arctic amplification decreases temperature variance in northern mid- to high-latitudes. Nat. Clim. Change, 2014. vol. 4, no. 7, pp. 577-582.

36. Screen J.A., Deser C., Sun L. Reduced risk of North American cold extremes due to continued Arctic sea ice loss.Bull. Am. Meteorol. Soc. 2015, vol. 96, no. 9, pp.1489-1503.

37. Semenov V.A. Link between anomalously cold winters in Russia and sea-ice decline in the Barents Sea. Izv., Atmos. Ocean. Phys., 2016, vol. 52, no. 3, pp. 225-233.

38. Semenov V.A., Shelekhova E.A., Mokhov I.I., Zuev V.V., Koltermann K.P. Influence of the Atlantic multidecadal oscillation on setting anomalous climate regimes in Northern Eurasia based on model simulation. Dokl. Earth Sci., 2014, vol. 459, no. 6, pp. 742-745.

39. Shakina N.P., Ivanova A.R. The blocking anticyclones: the state of studies and forecasting. Russ. Meteorol. Hydrol., 2010, vol. 35, no. 11, pp. 721-730.

40. Shukurov K.A., Semenov V.A. Characteristics of winter surface air temperature anomalies in Moscow in 1970-2016 under conditions of reduced sea ice area in the Barents Sea. Izv., Atmos. Ocean. Phys., 2018, vol. 54, no. 1, pp. 10-24.

41. Signal Processing Toolbox User's Guide. Natick: The MathWorks, Inc. 1993. 658 p.

42. Sporyshev P.V., Katsov V.M., Matyugin V.A. A correspondence between the model ensemble simulations and observations on the territory of Russia. Russ. Meteorol. Hydrol., 2012, vol. 37, no. 1, pp. 1-11.

43. Stont G.I., Demidov А.К Variability of air temperature over the south-eastern Baltic Sea by OIFP D-6 Data (2004-2013). Vestn. Mosk. Gos. Univ., Ser 5: Geogr., 2015, no. 2, pp. 50-58. (In Russ.).

44. Szyga-Pluta K. Large day-to-day variability of extreme air temperatures in Poland and its dependency on atmospheric circulation. Atmosphere, 2021, vol. 12, no. 1, pp.80-100.

45. Tischenko V.A., Khan V.M., Vilfand R.M., Roget E. Studying the development of atmospheric processes associated with blocking and quasistationary anticyclones in the Atlantic European sector. Russ. Meteorol. Hydrol., 2013, vol. 38, no. 7, pp. 444-455.

46. Titkova T.B., Cherenkova E.A., Semenov V.A. Regional features of changes in winter extreme temperatures and precipitation in Russia in 1970-2015. Led i Sneg, 2018, no. 4, pp. 486-497. (In Russ.).

47. Vinogradova V.V. Cold waves in winter in Russia since the second half of the 20th century. Izv. Akad. Nauk, Ser. Geogr., 2018, no. 3, pp. 37-46. (In Russ.).

48. Volodin Е.М., Gritsun А.S. Simulation of possible future climate changes in the 21st century in the INM-CM5 Climate model. Izv., Atmos. Ocean. Phys., 2020, vol. 56, no. 3, pp. 218-228.

49. Wan H., Kirchmeier-Young M.C., Zhang X. Human influence on daily temperature variability over land. Environ. Res. Lett., 2021, vol. 16, no. 9, 094026.

50. Weisheimer A., Palmer T.N. Changing frequency of occurrence of extreme seasonal temperature under global warming. Geophys. Res. Lett., 2005, vol. 32, no. 20, L20721. https://doi.org/10.1029/2005GL023365

51. Yeh S.W., Hyun S.H., Park I.H., Zheng X.T. Surface temperature variability in climate models with large and small internal climate variability. Q. J. R. Meteorol. Soc., 2021, vol. 147, pp. 3004-3016.

52. Ylhaisi J.S., Raisanen J. Twenty-first century changes in daily temperature variability in CMIP3 climate models. Int. J. Climatol., 2014, vol. 34, no. 5, pp. 1414-1428.

53. Zhao S., Zhang J., Deng Y., Wang N. Understanding the increasing hot extremes over the northern extratropics using community atmosphere model. Asia-Pacific J. Atmos. Sci., 2021. https://doi.org/10.1007/s13143-021-00264-z


Review

For citations:


Babina E.D., Semenov V.A. Changes in Intensity of Daily Surface Air Temperature Variations in Different Intramonthly Variability Ranges from Russian Meteorological Stations in 1970–2018. Izvestiya Rossiiskoi Akademii Nauk. Seriya Geograficheskaya. 2022;86(4):528-546. (In Russ.) https://doi.org/10.31857/S2587556622030049

Views: 564


ISSN 2587-5566 (Print)
ISSN 2658-6975 (Online)