Spatial and Temporal Variability of ERA5 Precipitation Accuracy over Russia
https://doi.org/10.31857/S2587556622030062
Abstract
Sparse rain gauge grid over Russia and instrumental heterogeneity of the measurements make use of reanalysis data more suitable for some researches. We examined the accuracy of daily precipitation by ERA5 over Russia in 1950–2020 against the gauge observations over 526 locations, including 457 locations with bias-corrected observations. The main flaws of ERA5 precipitations are overestimation of their amount and too high number of days with false detected precipitations. On average, ERA5 overestimate precipitation amount from 14% in summer to 37% in spring. Comparison with bias-corrected observations for ERA5 shows the least systematic error in winter and more even spatial distribution of the error. ERA5 false detected from 30% (winter and fall) to 40% (spring and summer) days without precipitation. However, the random error in general is less than 2/3 of daily precipitation variability. The error is more in spring and summer and less in winter and fall. The share of days with precipitation identified by ERA5 is about 84–89%. The share in general less in summer than in other seasons. Overall, ERA5 shows less accuracy in dry area with few days with precipitation. The tendency is most pronounce for systematic error and for share of days with false identified precipitations.
About the Authors
V. Yu. GrigorevRussian Federation
Faculty of Geography MSU
Moscow
N. L. Frolova
Russian Federation
Faculty of Geography
Moscow
M. B. Kireeva
Russian Federation
Faculty of Geography
Moscow
V. M. Stepanenko
Russian Federation
Moscow
References
1. Amjad M., Yilmaz M.T., Yucel I., Yilmaz K.K. Performance evaluation of satellite- and model-based precipitation products over varying climate and complex topography. J. Hydrology, 2020, vol. 584, 124707. https://doi.org/10.1016/j.jhydrol.2020.124707
2. An Y., Zhao W., Li C., Liu Y. Evaluation of six satellite and reanalysis precipitation products using gauge observations over the Yellow River Basin, China. Atmosphere, 2020, vol. 11, no. 11, 1223. https://doi.org/10.3390/atmos11111223
3. Beck H.E., Pan M., Roy T., Weedon G.P., Pappenberger F., Dijk A.I.J.M. Van, Huffman G.J., Adler R.F., Wood E.F. Daily evaluation of 26 precipitation datasets using Stage-IV gauge-radar data for the CONUS. Hydrol. Earth Syst. Sci., 2019, vol. 23, no. 1, pp. 207–224. https://doi.org/10.5194/hess-23-207-2019
4. Behrangi A., Singh A., Song Y., Panahi M. Assessing gauge undercatch correction in Arctic basins in light of GRACE observations. Geophys. Res. Lett., 2019, vol.46, no. 20, pp. 11358–11366. https://doi.org/10.1029/2019GL084221
5. Benavidez R., Jackson B., Maxwell D., Norton K. A review of the (Revised) Universal Soil Loss Equation ((R)USLE): With a view to increasing its global applicability and improving soil loss estimates. Hydrol. Earth Syst. Sci., 2018, vol. 22, no. 11, pp. 6059–6086. https://doi.org/10.5194/hess-22-6059-2018
6. Betts A.K., Chan D.Z., Desjardins R.L. Near-surface biases in ERA5 over the Canadian Prairies. Front. Environ. Sci., 2019, vol. 7, pp. 129. https://doi.org/10.3389/fenvs.2019.00129
7. Bogdanova E.G., Gavrilova S.Yu. Correction of the precipitation time series nonhomogeneity caused by replacement of the Nipher shielded rain gauge by a Tretyakov precipitation gauge. Russ. Meteorol. Hydrol., 2008, vol.33, no. 8, pp. 525–536. https://doi.org/10.3103/S1068373908080074
8. Chernokulsky A., Kozlov F., Zolina O., Bulygina O., Mokhov I.I., Semenov V.A. Observed changes in convective and stratiform precipitation in Northern Eurasia over the last five decades. Environ. Res. Lett., 2019, vol. 14, no. 4, 045001. https://doi.org/10.1088/1748-9326/aafb82
9. Emmanouil S., Langousis A., Nikolopoulos E.I., Anagnostou E.N. An ERA-5 derived CONUS-wide high-resolution precipitation dataset based on a refined parametric statistical downscaling framework. Water Resour. Res., 2021, vol. 57, no. 6, e2020WR029548. https://doi.org/10.1029/2020WR029548
10. Gleixner S., Demissie T., Diro G.T. Did ERA5 improve temperature and precipitation reanalysis over East Africa? Atmosphere, 2020, vol. 11, no. 9, 996. https://doi.org/10.3390/atmos11090996
11. Groisman P.Y., Koknaeva V.V., Belokrylova T.A., Karl T.R. Overcoming biases of precipitation measurement: a history of the USSR experience. Bull. Am. Meteorol. Soc., 1991, vol. 72, no. 11, pp. 1725–1733. https://doi.org/10.1175/1520-0477(1991)072<1725:OBOPMA>2.0.CO;2
12. Hersbach H., Bell B., Berrisford P. et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc., 2020, vol. 146, no.730, pp. 1999–2049. https://doi.org/10.1002/qj.3803
13. Jiang Q., Li W., Fan Z., He X., Sun W., Chen S., Wen J., Gao J., Wang J. Evaluation of the ERA5 reanalysis precipitation dataset over Chinese Mainland. J. Hydrol., 2021, vol. 595, 125660. https://doi.org/10.1016/j.jhydrol.2020.125660
14. Kislov A.V., Kitaev L.M., Konstantinov I.S. A statistical structure of large-scale snow cover field. Meteorologiya i Gidrologiya, 2001, no. 8, pp. 98–104. (In Russ.).
15. Nogueira M. Inter-comparison of ERA-5, ERA-interim and GPCP rainfall over the last 40 years: Process-based analysis of systematic and random differences. J. Hydrol., 2020, vol. 583, 124632. https://doi.org/10.1016/j.jhydrol.2020.124632
16. Rivoire P., Martius O., Naveau P.A. Comparison of moderate and extreme ERA-5 daily precipitation with two observational data sets. Earth Space Sci., 2021, vol. 8, no. 4, e2020EA001633. https://doi.org/10.1029/2020EA001633
17. Singh T., Saha U., Prasad V.S., Gupta M.D. Assessment of newly-developed high resolution reanalyses (IMDAA, NGFS and ERA5) against rainfall observations for Indian region. Atmos. Res., 2021, vol. 259, 105679. https://doi.org/10.1016/j.atmosres.2021.105679
18. Sun S., Shi W., Zhou S., Chai R., Chen H., Wang G., Zhou Y., Shen H. Capacity of satellite-based and reanalysis precipitation products in detecting long-term trends across Mainland China. Remote Sens., 2020, vol. 12, no. 18, 2902. https://doi.org/10.3390/RS12182902
19. Tang G., Behrangi A., Long D., Li C., Hong Y. Accounting for spatiotemporal errors of gauges: A critical step to evaluate gridded precipitation products. J. Hydrol., 2018, vol. 559, pp. 294–306. https://doi.org/10.1016/j.jhydrol.2018.02.057
20. Voropay N., Ryazanova A., Dyukarev E. High-resolution bias-corrected precipitation data over South Siberia, Russia. Atmos. Res., 2021, vol. 254, 105528. https://doi.org/10.1016/j.atmosres.2021.105528
21. Zhakov I.S. Obshchie zakonomernosti rezhima tepla i uvlazhneniya na territorii SSSR [General Regularities of the Heat and Moisture Regime on the Territory of the USSR]. Leningrad: Gidrometeoizdat Publ., 1982. 231 p.
Review
For citations:
Grigorev V.Yu., Frolova N.L., Kireeva M.B., Stepanenko V.M. Spatial and Temporal Variability of ERA5 Precipitation Accuracy over Russia. Izvestiya Rossiiskoi Akademii Nauk. Seriya Geograficheskaya. 2022;86(3):435-446. (In Russ.) https://doi.org/10.31857/S2587556622030062