Preview

Izvestiya Rossiiskoi Akademii Nauk. Seriya Geograficheskaya

Advanced search

Spatio-Temporal Variability of Hydrochemical Parameters of the Iriklinskii Reservoir in Modern Conditions

https://doi.org/10.31857/S2587556622050119

Abstract

The changes in the total mineralization, the content of organic matter and nutrients in the water of the largest Iriklinskii reservoir on the Ural River in 2010–2019 are shown. An analysis of the dynamics of surface air temperature and precipitation on the territory of the Orenburg oblast was carried out. The increase in winter temperatures contributed to the redistribution of the intra-annual water inflow to the artificial reservoir. Over the past decade, its share in the winter period has significantly increased by almost 2 times (from 6 to 15%), and during the flood, on the contrary, a slight downward trend was observed. Changes in the components of the water balance led to an increase in mineralization due to an increase in the content of sulfates, hydrocarbonates and the amount of alkaline elements. The decrease in the amount of precipitation in the region at the beginning of the 21st century was the likely reason for the decrease in the volume of spring floods and, as a result, the decrease in the concentrations of allochthonous organic matter, ammonium nitrogen, and silicon. The dynamics of mineral nitrogen largely depended on water content, and the dominant source in the genesis of phosphates was, obviously, intra-water processes. The iron concentration was determined by the magnitude of the flood inflow. The spatial dynamics of the ingredients is due to the morphometric features of the reservoir. The highest concentrations are noted in the upper reaches. The decrease in the content of the main hydrochemical components in the deep-water lower reaches as a result of intra-water processes indicates a high self-cleaning capacity of the reservoir. The results obtained can supplement the already known data on the functioning of aquatic ecosystems in different geographic zones under current conditions of climate change.

About the Authors

S. A. Mosiyash
Russian Federal Research Institute of Fisheries and Oceanography
Russian Federation

Saratov



E. A. Shashulovskaya
Russian Federal Research Institute of Fisheries and Oceanography
Russian Federation

Saratov



References

1. Alimov A.F., Golubkov M.S. Lake eutrophication and community structure. Inland Water Biology, 2014, vol. 7, no. 3, рр. 185–191. (In Russ.).

2. Balabanova Z.M. Hydrochemical characteristics of the Iriklinskoe reservoir. Tr. Ural. Otd. Sib. Nauchno-Issled. Instit. Rybn. Khozyaistva, 1971, no. 8, рp. 27–46. (In Russ.).

3. Bastidas Navarro M.A., Modenutti B.E. Precipitation patterns, dissolved organic matter and changes in the plankton assemblage in Lake Escondido (Patagonia, Argentina). Hydrobiologia, 2012, vol. 691, рр. 189–202. https://doi.org/10.1007/s10750-012-1073-5

4. Bjorneras C., Weyhenmeyer G.A., Evans C.D. et al. Widespread increases in iron concentration in European and North American freshwaters. Glob. Biogeochem. Cycles, 2017, vol. 31, рр. 1488–1500.

5. Boström B., Andersen J.M., Fleischer S., Jansson M. Exchange of phosphorus across the sediment-water interface. Hydrobiol., 1988, vol. 170, pp. 229–244. https://doi.org/10.1007/BF00024907

6. Carvalho L., McDonald C., de Hoyos C. et. al. Sustaining recreational quality of European lakes: minimizing the health risks from algal blooms through phosphorus control. J. Appl. Ecol., 2013, vol. 50, рр. 315–323.

7. Cherenkova E.A., Sidorova M.V. Assessment of modern conditions of insufficient moisture, affecting low water content in the basins of large rivers of the European part of Russia. Vodn. Resur., 2021, vol. 48, no. 3, pp. 260–269. (In Russ.).

8. Chibilev A.A., Pavleichik V.M., Damrin A.G. Iriklinskoe vodokhranilishche: geoekologiya i prirodno-resursnyi potentsial [Iriklinskoe Reservoir: Geoecology and Natural Resource Potential]. Ekaterinburg: UrO RAN, 2006. 183 p.

9. Chou Q., Nielsen A., Andersen T.K. et al. The impacts of extreme climate on summer-stratified temperate lakes: Lake Søholm, Denmark, as an example. Hydrobiol., 2021, vol. 848, рр. 3521–3537. https://doi.org/10.1007/s10750-021-04607-9

10. Datsenko Y.S., Puklakov V.V. Model sssessment of the Mozhaisk reservoir impact on the transformation of organic matter flow. Russ. Meteorol. Hydrol., 2020, vol. 45, рр. 579–586. https://doi.org/10.3103/S1068373920080099

11. Dmitrieva V.A., Nefedova E.G. Hydrological response to changing climatic conditions and anthropogenic activities in the Upper Don basin. Vopr. Geogr., 2018, vol. 145, pp. 285–297. (In Russ.).

12. Doig L.E., North R.L., Hudson J.J., Hewlett C., Lindenschmidt K.-E., Liber K. Phosphorus release from sediments in a river-valley reservoir in the northern Great Plains of North America. Hydrobiol., 2017, vol. 787, pp. 323–339. https://doi.org/10.1007/s10750-016-2977-2

13. Doklad ob osobennostyakh klimata na territorii Rossiiskoi Federatsii za 2019 god [Report on Climate Features in the Territory of the Russian Federation for 2019]. Moscow, 2020. 97 p.

14. Dzhamalov R.G., Frolova N.L., Telegina E.A. Changes in the winter runoff of rivers in the European part of Russia. Vodn. Resur., 2015, vol. 15, no. 6, pp. 581–588. (In Russ.).

15. Georgievskii V.Yu. Water resources of the Russian Federation in a changing climate. In Gidrometeorologiya i ekologiya: trudy II Vserossiiskoi konferentsii [Hydrometeorology and Ecology: Proceedings of the II All-Russian Conference]. 2018, рp. 169–171. (In Russ.).

16. Höök T.O., Foley C.J., Collingsworth P., Dorwor L., Fisher B., Hoverman J.T., LaRue E., Pyron M., Tank J. An assessment of the potential impacts of climate change on freshwater habitats and biota of Indiana, USA. Climatic Change, 2020, vol. 163, pp. 1897–1916.

17. Kalinkina, N.M., Filatov, N.N., Tekanova, E.V., Balaganskii A.F. Long-term dynamics of the runoff of iron and phosphorus into Lake Onega with the waters of the Shuya River in the conditions of climatic changes. Reg. Ekol., 2018, no. 2, pp. 65–73. (In Russ.).

18. Kambalina M.G., Skvortsova L.N., Mazurova I.S., Guseva N.V., Bakibaev A.A. Investigation of the forms of silicon in natural waters with a high content of dissolved organic substances. Izv. Tomsk. Politekh. Univ. Khimiya i Khimicheskie Tekhnologii, 2014, vol. 325, pp. 64–70. (In Russ.).

19. Kirpichnikova N.V., Lapina E.E., Kudryashova V.V. Longterm dynamics of nitrogen and phosphorus content in groundwater of the catchment area of the Ivankovo reservoir. Vodn. Resur., 2020, vol. 47, no. 5, pp. 536–545. (In Russ.).

20. Kokorite I., Klavins M., Rodinov V. et al. Trends of natural organic matter concentrations in river waters of Latvia. Environ. Monit. Assess., 2012, vol. 184, рр. 4999–5008. https://doi.org/10.1007/s10661-011-2315-0

21. Korneva L.G., Lazareva V.I., Mineeva N.M., Sigareva L.E., Sokolova E.A., Timofeeva N.A., Mitropol’skaya I.V., Solov’eva V.V. The state and dynamics of biological communities of the Rybinsk reservoir under the conditions of climate change. Zh. Sib. Fed. Univ., Ser. Biol., 2019, vol. 12, no. 2, pp. 160–179. (In Russ.).

22. Lazareva V.I., Stepanova I.E., Tsvetkov A.I., Pryanichnikova E.G., Perova S.N. Oxygen regime of the Volga and Kama reservoirs during the period of climate warming: consequences for zooplankton and zoobenthos. Tr. Inst. Biol. Vnutrennikh Vod im. I.D. Papanina RAN, 2018, no. 81 (84), pp. 47–84. (In Russ.).

23. Linnik P.M. Climatic changes as an important factor in the formation of the chemical composition of surface waters in modern conditions (review). Gidrobiol. Zh., 2020, vol. 56, no. 5, pp. 87–106. (In Ukr.).

24. Martynova M.V. Influence of the chemical composition of bottom sediments on the internal phosphorus load. Vodn. Resur., 2008, no. 3, pp. 358–363. (In Russ.).

25. Moiseenko T.I., Gashkina N.A., Khoroshavin V.Yu. Forecast of the impact of possible climate warming on the chemical composition of land waters. Dokl. Akad. Nauk, 2011, vol. 441, no. 5, pp. 666–669. (In Russ.).

26. Nauchno-prikladnoi spravochnik: Mnogoletnie kharakteristiki pritoka vody v krupneishie vodokhranilishcha RF [Scientific and Applied Handbook: Long-Term Characteristics of Water Inflow into the Largest Reservoirs of the Russian Federation]. Georgievskii V.Yu., Ed. Moscow: Ofort Publ., 2017. http://www.hydrology.ru/sites/default/files/Books/block_vodohranilishe-190717.pdf

27. Nauchno-prikladnoi spravochnik: Mnogoletnie kolebaniya i izmenchivost' vodnykh resursov i osnovnykh kharakteristik stoka rek Rossiiskoi Federatsii [Scientific and Applied Handbook: Long-Term Fluctuations and Variability of Water Resources and the Main Characteristics of the Flow of Rivers in the Russian Federation]. St. Petersburg: RIAL Publ., 2021. 190 p.

28. O’Kelly J. Phosphorus nutrition of algae. In Fosfor v okruzhayushchei srede [Phosphorus in the Environment]. Moscow: Mir Publ., 1977, рp. 482–489. (In Russ.).

29. Pavleichik V.M., Sivokhip Zh.T. Formation of the quality of surface waters in the basin of the upper reaches of the Ural River in the conditions of technogenic transformation of the natural environment. Vodn. Resur., 2013, vol. 40, no. 5, pp. 456–467. (In Russ.).

30. Sabylina A.V., Lozovik P.A., Zobkov M.B. Chemical composition of the water of Lake Onega and its tributaries. Vodn. Resur., 2010, vol. 37, no. 6, pp. 717–729. (In Russ.).

31. Shashulovskaya E.A., Mosiyash S.A. Features of the mineral composition of the water of the Iriklinskii reservoir and adjacent sections of the Ural River. In Mat. VII Vseross. konf. po vodnoi ekotoksikologii, posvyashchennoi pamyati d.b.n., prof. B. A. Flerova “Antropogennoe vliyanie na vodnye organizmy i ekosistemy” [Proc. VII AllRuss. Conf. on Aquatic Ecotoxicology, Dedicated to the Memory of Doctor of Biological Sciences, prof. B.A. Flerov “Anthropogenic Impact on Aquatic Organisms and Ecosystems”]. Yaroslavl: Filigree Publ., 2020, pp. 227–230. (In Russ.).

32. Shashulovskaya E.A., Mosiyash S.A. Some approaches to assessing the ecological state of different types of reservoirs based on the relationship of the main hydrochemical parameters. Povolzhskii Ekol. Zh., 2019, no. 3, рp. 371–383. (In Russ.).

33. Shashulovskaya E.A., Mosiyash S.A., Dalechina I.N. Long-term changes in the main indicators of the trophic state of the large plain reservoir under the influence of climatic transformation and succession processes. Inland Water Biol., 2021, no. 6, pp. 627–637.

34. Shashulovskaya E.A., Mosiyash S.A., Filimonova I.G., Grishina L.V., Kuzina E.G. Formation of the hydrochemical regime of the upper reaches of the Ural River in the conditions of technogenic flow regulation. Povolzhskii Ekol. Zh., 2017, no. 4, pp. 417–425. (In Russ.).

35. Sivokhip Zh.T., Pavleichik V.M., Chibilev A.A. Changes in the water regime of rivers in the Ural basin. Dokl. Akad. Nauk, 2019, vol. 488, no. 5, pp. 545–549. (In Russ.).

36. Skopintsev B.A., Goncharova I.A. Using the values of the ratios of various indicators of the organic matter of natural waters for its qualitative assessment. In Sovremennye problemy regional’noi i prikladnoi gidrokhimii [Modern Problems of Regional and Applied Hydrochemistry]. Leningrad: Nauka Publ., 1987, рp. 95–117. (In Russ.).

37. Solovykh G.N., Raimova E.K., Osadchaya N.D., Fabarisova L.G., Nikitina L.P. Gidrobiologicheskaya kharakteristika Iriklinskogo vodokhranilishcha [Hydrobiologi- cal Characteristics of the Iriklinskii Reservoir]. Yekaterinburg: UrO RAN, 2003. 178 p.

38. Søndergaard M., Jensen J.P, Jeppesen E. Internal phosphorus loading in shallow Danish lakes. Hydrobiol., 1999, vol. 408, pp. 145–152.

39. Struktura i funktsionirovanie ekosistemy Rybinskogo vodokhranilishcha v nachale XXI veka [Structure and Functioning of the Ecosystem of the Rybinsk Reservoir at the Beginning of the 21st Century]. Moscow: Ross. Akad. Nauk, 2018. 145 р.

40. Vasil’ev D.Yu., Vodop’yanov V.V., Semenov V.A., Chibilev A.A. Assessment of trends in aridity for the territory of the Southern Urals in the period 1960–2019 using various methods. Dokl. RAN. Nauki o Zemle, 2020, vol. 494, pp. 91–96. (In Russ.).

41. Veraart A.J., De Klein J.J., Schеffer M. Warming can boost denitrification disproportionately due to altered oxygen dynamics. PLoS One, 2011, vol. 6, no. 3, e18508.

42. Vishnevskii V.I. Hydrological and hydrochemical regime of Dnieper water storage facilities. Gidrobiol. Zh, 2020, no. 2, pp. 103–120. (In Russ.).

43. Weyhenmeyer G.A., Müller R.A., Norman M. et al. Sensitivity of freshwaters to browning in response to future climate change. Climatic Change, 2016, vol. 134, pp. 225–239. https://doi.org/10.1007/s10584-015-1514-z

44. Zhezherya VA, Zhezherya T.P., and Linnik P.M. Nutrients in the water of reservoirs of the Dnieper cascade after regulation of the Dnieper runoff. Gidrobiol. Zh., 2021, no. 6, pp. 89–109. (In Ukr.).


Review

For citations:


Mosiyash S.A., Shashulovskaya E.A. Spatio-Temporal Variability of Hydrochemical Parameters of the Iriklinskii Reservoir in Modern Conditions. Izvestiya Rossiiskoi Akademii Nauk. Seriya Geograficheskaya. 2022;86(5):697–714. (In Russ.) https://doi.org/10.31857/S2587556622050119

Views: 230


ISSN 2587-5566 (Print)
ISSN 2658-6975 (Online)