Morphometric Features of Debris Flow Basins of the Mountains of the Russian Subarctic’s European Sector
https://doi.org/10.31857/S2587556622050107
Abstract
We calculated the morphometric features of the debris flow basins of the key mountain massifs of the Russian Subarctic’s European sector (the Monchetundra, the Chunatundra, the Volchyi Tundry, the Khibiny, the Lovozerskiye Tundry on the Kola Peninsula and the Ochenyrd Ridge, the Lyadkhe mountain massif, the Nyarmynkhoi Ridge, the Enganepe Ridge, the Malyi Paypudinskii Ridge, the Bolshoi Paypudinskii Ridge and the Kharbeyskii Ridge on the Polar Ural) by means of GIS. We obtained a data on (a) the different order basins watershed area, height, and mean surface slope, (b) talwegs’ length, altitude position and slope, (c) young and ancient accumulation zones area and range of removal of debris flow deposits beyond the limits of mountain massifs. Comparison of basins of different orders in key areas allowed to identify the most typical conditions for debris flow formation in the mountains of the European sector of the Russian Subarctic. Debris flow form in watersheds of the first order (according to Straller–Filosofov) with an area of 0.6 to 3.2 km2 and of the second order with an area of 10 to 12 km2. The most typical slope values of mudflow thalwegs of the first order are from 90 to 330‰, of the second order from 45 to 100‰. The most typical altitude level of debris flow formation is from 400 to 800 m. In the basins of the first order, the areas of young debris flow accumulation as a rule, are up to 0.08–0.15 km2, the areas of ancient debris flow accumulation are up to 0.2– 0.4 km2. In the basins of the second order, the areas of young debris flow accumulation are up to 0.1–0.3 km2; of ancient—up to 0.2–1.0 km2. The range of removal of both young and ancient debris flow deposits beyond the boundaries of mountain massifs is up to 0.8–1.3 km.
Keywords
About the Authors
A. I. RudinskayaRussian Federation
Moscow
Yu. R. Belyaev
Russian Federation
Moscow
References
1. Breien H., De Blasio F.B., Elverhoi A., Hoeg K. Erosion and morphology of a debris flow caused by a glaсial lake outburst flood, Norway. Landslides, 2008, no. 5, pp. 271–280. https://doi.org/10.1007/s10346-008-0118-3
2. Chen C.-Y., Yu F.-C. Morphometric analysis of debris flows and their source areas using GIS. Geomorphology, 2011, vol. 129, pp. 387–397. https://doi.org/10.1016/j.geomorph.2011.03.002
3. Evzerov V.Ya., Nikolaeva S.B. The first experience in reconstructing the surface of glaciers at various stages of glaciation (on the example of the region of the Khibiny and Lovozero tundras on the Kola Peninsula). Vestn. Voronezh. Gos. Univ., Ser. Geol., 2010, no. 1, pp. 54–59. (In Russ).
4. Filosofov V.P., Denisov S.V. On the order of river valleys and their connection with tectonic. In Morfometricheskii metod pri geologicheskikh issledovaniyakh [Morphometric Method in Geological Research]. Saratov: Saratov Univ. Publ., 1963, pp. 487–509. (In Russ.).
5. Fleishman S.M. Seli [Debris flows]. Leningrad: Gidrometeoizdat Publ., 1978. 312 p. Forman R., Gordon M. Landscape Ecology. Cambridge, 1986. 336 p.
6. Garankina E., Belyaev V., Belyaev Y., Gurinov A., Ivanov M., Kuzmenkova N., Romanenko F., Rudinskaya A., Tulyakov E. Integration of landforms, deposits and paleosols analysis for reconstructing Holocene debris flow activity in the low mountains of Kola Peninsula. In Climate Change Impacts on Sediment Dynamics: Measurement, Modelling and Management.
7. Chalov S., Golosov V., Li R., Tsyplenkov A., Eds. Springer Proceedings in Earth and Environmental Sciences (SPEES). Cham: Springer, 2019, pp. 47–51. https://doi.org/10.1007/978-3-030-03646-1_9
8. Garankina E.V., Lukashov А.А. The probable role of seismic events as mudflow trigger in the Khibiny (Kola Peninsula, Russia). Georisk, 2018, vol. 12, no. 4, pp. 48–57. (In Russ.).
9. Giannecchini R., Naldini D., D’Amato Avanzi G., Puccinelli A. Modelling of the initiation of rainfall induced debris flows in the Cardoso basin (Apuan Alps, Italy). Quat. Int., 2007, vol. 171, pp. 108–117. https://doi.org/10.1016/j.quaint.2007.01.011
10. Ilinca V. Characteristics of debris flow from the lower part of the Lotru River Basin (South Carpatians, Romania). Landslides, 2014, no. 11, pp. 505–512. https://doi.org/10.1007/s10346-013-0412-6
11. Ivanov M.N. Evolutsiya oledeneniya Polarnogo Urala v pozdnem golotsene [Evolution of Glaciation in the Polar Ural in the Late Holocene]. Moscow: Mosk. Gos. Univ., Fakul’tet Geogr. Publ., 2013. 200 p.
12. Lang S., Blaschke T. Landschaftsanalysemit GIS. Stuttgart, 2007. 389 p.
13. Oledenenie Urala [The Urals Glaciation]. Avsyuk G.A., Kemmerikh A.O., Eds. Moscow: Nauka Publ., 1966. 538 p.
14. Perov V.F. Selevedenie. Uchebnoe posobie [Debris Flow. Tutorial]. Moscow: Mosk. Gos. Univ. Publ., 2012. 274 p.
15. Perov V., Chernomorets S., Budarina O., Savernyuk E., Leontieva T. Debris flow hazards for mountain regions of Russia: regional features and key events. Nat. Hazards, 2017, no. 88, pp. 199–235. https://doi.org/10.1007/s11069-017-2841-3
16. Porter C., Morin P., Howa I., Noh M.J., Bates B., Peterman K., Keesey S., Schlenk M., Gardiner J., Tomko K., Willis M., Kelleher C., Cloutier M., Husby E., Foga S., Nakamura H., Platson M., Wethington M., Williamson C., Bauer G., Enos J., Arnold G., Kramer W., Becker P., Doshi A., D’Souza C., Cummens P., Laurier F., Bojesen M. ArcticDEM. Harvard Dataverse, V1, 2018. https://doi.org/10.7910/DVN/OHHUKH
17. Poznanin V.L. Debris flows of the northern part of the Polarny Ural. In Izuchenie i okhrana gidrosfery [Study and Protection of the Hydrosphere]. Moscow: Nauka Publ., 1975, pp. 10–11. (In Russ.).
18. Rudinskaya A.I., Belyaev Yu.R., Gurinov A.L., Belyaev V.R., Garankina E.V. Geomorphological positions of debris flow basins in the Lovozerskiye Tundry. Vestn. Mosk. Univ., Ser. 5: Geogr., 2022, no. 2. (In Russ.).
19. Rybchenko A., Kadetova A. Kozireva E. Relation between basin morphometric features and dynamic characteristics of debris flows – a case study in Siberia, Russia. J. Mt. Sci., 2018, no. 15, pp. 618–630. https://doi.org/10.1007/s11629-017-4547-0
20. SP 479.1325800.2019 (Code of Rules). Engineering Surveys for Construction in Areas of Debris Flow Development. Moscow: Standartinform, 2020. (In Russ.).
21. Spiridonov A.I. Fennoscandia region. In Geomorfologicheskoe raionirovanie SSSR i prilegayushchikh morei [Geomorphological Zoning of the USSR and Adjacent Seas]. Moscow: Vysshaya Shkola Publ., 1980, pp. 19–26. (In Russ.).
22. Strahler A. Quantitative analysis of watershed geomorphology. Eos Trans, AGU, 1957, vol. 38, no. 6, pp. 913–920.
23. Surova T.G., Troitskii L.S., Punning Ya-M.K. Development of the Polar Urals glaciation in the late Pleistocene and Holocene (in connection with the study of ice-dammed lakes sediments). In MGI. Khron., obs. Moscow: VINITI, 1974, vol. 23, pp. 61–68. (In Russ).
24. Svendsen J., Krüger L., Mangerud J., Astakhov V., Paus A., Nazarov D., Murray A. Glacial and vegetation history of the Polar Ural Mountains in Northern Russia during the Last Ice Age, Marine Isotope Stages 5-2. Quat. Sci. Rev., 2014, vol. 92, pp. 409–428. https://doi.org/10.1016/j.quascirev.2013.10.008
25. Tang Ch., Zhu J., Chang M., Ding J., Xin Qi. An empiricalstatistic model for predicting debris flow runout zones in the Wenchuan earthquake area. Quat. Int., 2012, no. 250, pp. 63–73. https://doi.org/10.1016/j.quaint.2010.11.020
26. Viktorov A.S., Kapralova V.N., Orlov T.V., Trapeznikova O.N., Arkhipova M.V., Berezin P.V., Zverev A.V., Panchenko E.N. Matematicheskaya morfologiya landshavtov kriolitozony [Mathematical Morphology of Permafrost Landscapes]. Moscow: RUDN, 2016. 232 p.
27. Vodosnezhnye potoki Khibin [Slushflows of the Khibiny]. Perov V.F. Bozhinskii A.N., Myagkov S.M. et al., Eds. Moscow: Geogr. Fak. Mosk. Gos. Univ., 2001. 167 p.
28. Wang, L., Liu Н. An efficient method for identifying and filling surface depressions in digital elevation models for hydrologic analysis and modelling. Int. J. Geogr. Inf. Sci., 2006, vol. 20, no. 2, pp. 193–213. https://doi.org/10.1080/13658810500433453
29. Welsh A., Davis T. Identification of alluvial fans susceptible to debris-flow hazards. Landslides, 2011, no. 8, pp. 183–194. https://doi.org/10.1007/s10346-010-0238-4
30. Wilford D., Sakal M., Innes J., Sidle R., Bergerud W. Recognition of debris flow, debris-flood and flood hazard through watershed morphometrics. Landslides, 2004, no. 1, pp. 61–66. https://doi.org/10.1007/s10346-003-0002-0
31. Xu W., Yu W., Jing Sh., Zhang G., Huang J. Debris flows susceptibility assessment by GIS and information value model in a large-scale region, Sychuan Province (China). Nat. Hazards, 2013, no. 65, pp. 1379–1392. https://doi.org/10.1007/s11069-012-0414-z
Review
For citations:
Rudinskaya A.I., Belyaev Yu.R. Morphometric Features of Debris Flow Basins of the Mountains of the Russian Subarctic’s European Sector. Izvestiya Rossiiskoi Akademii Nauk. Seriya Geograficheskaya. 2022;86(5):746–762. (In Russ.) https://doi.org/10.31857/S2587556622050107