Preview

Izvestiya Rossiiskoi Akademii Nauk. Seriya Geograficheskaya

Advanced search

Vertical Fluxes of Sedimentary Matter and Modern Sedimentation Rates in the White Sea

https://doi.org/10.31857/S2587556622060103

Abstract

Marine sedimentation was studied using dispersed sedimentary material of the water column in sediment traps in comparison with the surface layer of bottom sediments. Based on the generalization of long-term studies of a small inland sea of the Arctic Ocean, it was possible to establish new regularities of the sedimentary process in the conditions of the Subarctic and Arctic zones. The quantitative transition of dispersed forms of sedimentary matter into concentrated forms (bottom sediments) in the White Sea fluxes a linear relationship, with a local maximum in the deep nepheloid layer. Areas of ultrafast sedimentation are distinguished— marginal filters (Northern Dvina River). Direct quantitative data on the fluxes of sedimentary matter in the water column of the White Sea, obtained using sediment traps at the ADOS observatories over 15 years of research, gave the following values: under the active layer in the range of 48–214 with an average of 74 g/m2/year; in the intermediate layer 54–298 with an average of 132 g/m2/year; in the near-bottom horizon 149–1814 with an average of 335 g/m2/year. The sedimentation rates (for 210Pb, 137Cs) of the surface layer of bottom sediments in terms of the mass accumulation rate (MAR) of dry sediment correspond to the interval 93–1260 with an average of 310 g/m2/year. Long-term data on the concentration of suspended matter and the flux of dispersed sedimentary matter clearly record stable year-round nepheloid layers, i.e. the distribution of scattered forms of sedimentary matter (suspension) in the water column occurs according to new patterns, which can be more clearly identified.

About the Authors

A. N. Novigatsky
Shirshov Institute of Oceanology of the Russian Academy of Sciences
Russian Federation

Moscow



A. A. Klyuvitkin
Shirshov Institute of Oceanology of the Russian Academy of Sciences
Russian Federation

Moscow



M. D. Kravchishina
Shirshov Institute of Oceanology of the Russian Academy of Sciences
Russian Federation

Moscow



N. V. Politova
Shirshov Institute of Oceanology of the Russian Academy of Sciences
Russian Federation

Moscow



A. S. Filippov
Shirshov Institute of Oceanology of the Russian Academy of Sciences
Russian Federation

Moscow



V. P. Shevchenko
Shirshov Institute of Oceanology of the Russian Academy of Sciences
Russian Federation

Moscow



References

1. Aliev R., Bobrov V., Kalmykov S., Melgunov M., Vlasova I., Shevchenko V., Novigatsky A., Lisitzin A. Natural and artificial radionuclides as a tool for sedimentation studies in the Arctic region. J. Radioanal. Nucl. Chem., 2007, vol. 274, no. 2, pp. 315–321. https://doi.org/10.1007/s10967-007-1117-x

2. Berger V.Y., Primakov I.M. Assessment of primary production in the White Sea. Russ. J. Mar. Biol., 2007, vol. 33, no. 1, pp. 49–53. https://doi.org/10.1134/S1063074007010051

3. Bisson K.M., Boss E., Werdell P.J., Ibrahim A., Behrenfeld M.J. Particulate backscattering in the global ocean: a comparison of independent assessments. Geophys. Res. Lett., 2021, vol. 48, no. 2, e2020GL090909. https://doi.org/10.1029/2020GL090909

4. Bringué M., Rochon A. Late Holocene paleoceanography and climate variability over the Mackenzie slope (Beaufort Sea, Canadian Arctic). Mar. Geol., 2012, vol. 291, pp. 83–96. https://doi.org/10.1016/j.margeo.2011.11.004

5. Forest A., Osborne P.D., Fortier L., Sampei M., Lowings M.G. Physical forcings and intense shelf–slope fluxes of particulate matter in the halocline waters of the Canadian Beaufort Sea during winter. Cont. Shelf Res., 2015, vol. 101, pp. 1–21. https://doi.org/10.1016/j.csr.2015.03.009

6. Gordeev V.V., Pokrovsky O.S., Shevchenko V.P. The mixing zone between waters of the Severnaya Dvina river and the White sea. In Biogeochemistry of the Atmosphere, Ice and Water of the White Sea. Lisitsyn A.P., Gordeev V., Eds. Springer Int. Publ., 2018, pp. 83–113. https://doi.org/10.1007/698_2018_352

7. Honjo S., Doherty K.W. Large aperture time-series sediment traps; design objectives, construction and application. Deep Sea Res. Part I Oceanogr. Res. Pap., 1988, vol. 35 (1), pp. 133–149. https://doi.org/10.1016/0198-0149(88)90062-3

8. Honjo S., Manganini S.J., Krishfield R.A., Francois R. Particulate organic carbon fluxes to the ocean interior and factors controlling the biological pump: A synthesis of global sediment trap programs since 1983. Prog. Oceanogr., 2008, vol. 76 (3), pp. 217–285. https://doi.org/10.1016/j.pocean.2007.11.003

9. Honjo S., Krishfield R.A., Eglinton T.I., Manganini S.J., Kempa J.N., Doherty K., Hwang J., McKee T.K., Takizawa T. Biological pump processes in the cryopelagic and hemipelagic Arctic Ocean: Canada Basin and Chukchi Rise. Prog. Oceanogr., 2010, vol. 85 (3–4), pp. 137–170. https://doi.org/10.1016/j.pocean.2010.02.009

10. Ilyash L.V., Radchenko I.G., Novigatsky A.N., Lisitzin A.P., Shevchenko V.P. Vertical flux of phytoplankton and particulate matter in the White Sea according to the long-term exposure of sediment traps. Oceanol., 2013, vol. 53 (2), pp. 192–199. https://doi.org/10.1134/S0001437013020057

11. Ivanov M.V., Lein, A.Y., Savvichev A.S., Rusanov I.I., Veslopolova E.F., Zakharova E.E., Prusakova T.S. Abundance and activity of microorganisms at the water-sediment interface and their effect on the carbon isotopic composition of suspended organic matter and sediments of the Kara Sea. Mikrobiol., 2013, vol. 82 (6), pp. 735–742. https://doi.org/10.1134/S0026261713060064

12. Kopelevich O.V., Sheberstov S.V., Saling I.V., Vazyulya S.V., Burenkov V.I. Seasonal and inter-annual changeability of bio-optical characteristics in the surface layer of the Barents, White, Black and Caspian seas from satellite data. Fundam. Prikladn. Gidrofiz., 2015, vol. 8, no. 1, pp. 7–16. (In Russ.).

13. Kopelevich O.V., Saling I.V., Vazyulya S.V., Glukhovets D.I., Sheberstov S.V., Burenkov V.I., Karalli P.G., Yushmanova A.V. Bioopticheskie kharakteristiki morei, omyvayushchikh berega zapadnoi poloviny Rossii, po dannym sputnikovykh skanerov tsveta 1998–2017 gg. [Bio-optical Characteristics of the Seas, Surrounding the Western Part of Russia, from Data of the Satellite Ocean Color Scanners of 1998–2017]. Moscow: VASH FORMAT Publ., 2018. 140 p.

14. Kravchishina M., Klyuvitkin A., Filippov A., Novigatsky A., Politova N., Shevchenko V., Lisitzin A. Suspended particulate matter in the White Sea: the results of longterm interdisciplinary research. Proc. Int. Assoc. Hydrol. Sci., 2015, vol. 365, pp. 35–41. https://doi.org/10.5194/piahs-365-35-2015

15. Kravchishina M.D., Lisitsyn A.P., Klyuvitkin A.A., Novigatsky A.N., Politova N.V., Shevchenko V.P. Suspended particulate matter as a main source and proxy of the sedimentation processes. In Sedimentation Processes in the White Sea: The White Sea. Lisitsyn A.P., Demina L.L., Eds. Springer Int. Publ., 2018, pp. 13–48. https://doi.org/10.1007/698_2018_353

16. Kuzyk Z.Z.A., Gobeil C., Macdonald R.W. 210Pb and 137Cs in margin sediments of the Arctic Ocean: Controls on boundary scavenging. Glob. Biogeochem. Cycles, 2013, vol. 27 (2), pp. 422–439. https://doi.org/10.1002/gbc.20041

17. Lein A.Y., Kravchishina M.D., Politova N.V., Savvichev A.S., Veslopolova E.F., Mitskevich I.N., Ul’yanova N.V., Shevchenko V.P., Ivanov M.V. Transformation of particulate organic matter at the water-bottom boundary in the Russian Arctic seas: Evidence from isotope and radioisotope data. Lithol. Miner. Resour., 2012, vol. 47 (2), pp. 99–128. https://doi.org/10.1134/S0024490212020034

18. Lein A.Y., Lisitsyn A.P. Processes of early diagenesis in the Arctic seas (on the example of the White Sea). In Sedimentation Processes in the White Sea: The White Sea. Lisitzin A.P., Demina L.L., Eds. Springer Int. Publ., 2018, pp. 165–206. https://doi.org/10.1007/698_2018_345

19. Levitan M.A. Sedimentation rates in the Arctic Ocean during the last five marine isotope stages. Oceanol., 2015, vol. 55 (3), pp. 425–433. https://doi.org/10.1134/S000143701503011X

20. Levitan M.A. Pleistotsenovye otlozheniya Mirovogo okeana [Pleistocene Deposits of the World Ocean]. Moscow: RAN, 2021. 408 p.

21. Lisitzin A.P. Sediment fluxes, natural filtration, and sedimentary systems of a “living ocean”. Russ. Geol. Geophys., 2004, vol. 45 (1), pp. 15–48.

22. Lisitzin A.P. Marine ice-rafting as a new type of sedimentogenesis in the Arctic and novel approaches to studying sedimentary processes. Russ. Geol. Geophys., 2010, vol. 51 (1), pp. 12–47. https://doi.org/10.1016/j.rgg.2009.12.002

23. Lisitzyn A.P., Kravchishina M.D., Kopelevich O.V., Burenkov V.I., Shevchenko V.P., Vazyulya S.V., Klyuvitkin A.A., Novigatskii A.N., Politova N.V., Filippov A.S., Sheberstov S.V. Spatial and temporal variability in suspended particulate matter concentration within the active layer of the White Sea. Dokl. Earth Sci., 2013, vol. 453 (2), pp. 1228–1233. https://doi.org/10.1134/S1028334X13120052

24. Lisitzin A.P., Novigatsky A.N., Shevchenko V.P., Klyuvitkin A.A., Kravchishina M.D., Filippov A.S., Politova N.V. Dispersed organic matter and its fluxes in oceans and seas from the example of the White Sea: results of a 12-year study. Dokl. Earth Sci., 2014, vol. 456 (1), pp. 635–639. https://doi.org/10.1134/S1028334X14050353

25. Lisitzin A.P., Novigatsky A.N., Aliev R.A., Shevchenko V.P., Klyuvitkin A.A., Kravchishina M.D. Comparative study of vertical suspension fluxes from the water column, rates of sedimentation, and absolute masses of the bottom sediments in the White Sea basin of the Arctic Ocean. Dokl. Earth Sci., 2015, vol. 465 (2), pp. 1253–1256. https://doi.org/10.1134/S1028334X1512003X

26. Lisitzin A.P., Novigatsky A.N., Klyuvitkin A.A. Seasonal variation of fluxes of dispersed sedimentary matter in the White Sea (Arctic ocean basin). Dokl. Earth Sci., 2015, vol. 465 (1), pp. 1182–1186. https://doi.org/10.1134/S1028334X15110112

27. Lisitzin A.P., Novigatsky A.N., Shevchenko V.P., Klyuvitkin A.A., Kravchishina M.D., Politova N.V. Dynamics of the main components of fluxes of sedimentary matter in the White Sea. Dokl. Earth Sci., 2017, vol. 472 (2), pp. 252–255. https://doi.org/10.1134/S1028334X17020295

28. Lukashin V.N., Klyuvitkin A.A., Lisitzin A.P., Novigatsky A.N. The MSL-110 small sediment trap. Oceanol., 2011, vol. 51(4), pp. 699–703. https://doi.org/10.1134/S0001437011040126

29. Mityaev M.V., Gerasimova M.V., Druzhkova E.I. Vertical particle fluxes in the coastal areas of the Barents and White Seas. Oceanol., 2012, vol. 52 (1), pp. 112–121. https://doi.org/10.1134/S0001437012010158

30. Novigatsky A.N., Lisitzin A.P., Klyuvitkin A.A., Shevchenko V.P., Kravchishina M.D., Politova N.V. Vertical fluxes of suspended sedimentary matter in Arctic sedimentogenesis of intracontinental seas. Dokl. Earth Sci., 2018, vol. 479 (1), pp. 384–389. https://doi.org/10.1134/S1028334X18030200

31. Novigatsky A.N., Klyuvitkin A.A., Lisitsyn A.P. Vertical fluxes of dispersed sedimentary matter, absolute masses of the bottom sediments, and rates of modern sedimentation. In Sedimentation Processes in the White Sea: The White Sea. Lisitsyn A.P., Demina L.L., Eds. Springer Int. Publ., 2018, pp. 49–66. https://doi.org/10.1007/698_2018_278

32. Novigatsky A.N., Lisitzin A.P., Shevchenko V.P., Klyuvitkin A.A., Kravchishina M.D., Politova N.V. Sedimentogenesis in the White Sea: Vertical fluxes of suspended particulate matter and absolute masses of bottom sediments. Oceanol., 2020, vol. 60 (3), pp. 372–383. https://doi.org/10.1134/S0001437020030078

33. Pathirana I. Knies J., Felix M., Mann U. Towards an improved organic carbon budget for the Barents Sea shelf, marginal Arctic Ocean. Clim. Past Discuss., 2013, vol. 9 (4), pp. 4939–4986. https://doi.org/10.5194/cpd-9-4939-2013

34. Pertsova N.M., Kosobokova K.N. Zooplankton of the White Sea: features of the composition and structure, seasonal dynamics, and the contribution to the formation of matter fluxes. Oceanology, 2003, vol. 43 (1), pp. 108–S122.

35. Politova N.V., Klyuvitkin A.A., Novigatsky A.N., Ul’yanova N.V., Chul’tsova A.L., Kravchishina M.D., Pavlova G.A., Lein A.Yu. Early diagenesis in recent bottom sediments of the Dvina Bay (White Sea). Oceanol., 2016, vol. 56 (5), pp. 702–713. https://doi.org/10.1134/S0001437016050106

36. St. John K. Cenozoic ice-rafting history of the central Arctic Ocean: Terrigenous sands on the Lomonosov Ridge. Paleoceanogr., 2008, vol. 23 (1), A1S05. https://doi.org/10.1029/2007PA001483

37. Stein R. Arctic Ocean Sediments: Processes, Proxies, And Paleoenvironment. Elsevier, 2008, vol. 2. 592 p.

38. Stepanets O.V., Borisov A.P., Travkina A.V., Solov’eva G.Y., Vladimirov M.V., Aliev R.A. Application of the 210Pb and 137Cs radionuclides in the geochronology of modern sediments at the storage sites of solid radioactive wastes in the Arctic Basin. Geochem. Int., 2010, vol. 48 (4), pp. 424–429. https://doi.org/10.1134/S0016702910040087

39. Szmytkiewicz A., Zalewska T. Sediment deposition and accumulation rates determined by sediment trap and 210Pb isotope methods in the Outer Puck Bay (Baltic Sea). Oceanol., 2014, vol. 56 (1), pp. 85–106. https://doi.org/10.5697/oc.56-1.085

40. Vetrov A.A., Romankevich E.A. Primary production and fluxes of organic carbon to the seabed in the Eurasian arctic seas, 2003-2012. Dokl. Earth Sci., 2014, vol. 454 (1), pp. 44–46. https://doi.org/10.1134/S0001437011020196


Review

For citations:


Novigatsky A.N., Klyuvitkin A.A., Kravchishina M.D., Politova N.V., Filippov A.S., Shevchenko V.P. Vertical Fluxes of Sedimentary Matter and Modern Sedimentation Rates in the White Sea. Izvestiya Rossiiskoi Akademii Nauk. Seriya Geograficheskaya. 2022;86(6):1023–1034. (In Russ.) https://doi.org/10.31857/S2587556622060103

Views: 303


ISSN 2587-5566 (Print)
ISSN 2658-6975 (Online)