Preview

Izvestiya Rossiiskoi Akademii Nauk. Seriya Geograficheskaya

Advanced search

The Climate of Zonal Plain Landscapes of Russia during the Modern Global Warming in Summer

https://doi.org/10.31857/S2587556623030111

EDN: QTNESR

Abstract

Changes in climate parameters and surface characteristics were considered between 1961–1990 and 1991– 2020 climate periods on the plains of the European part of Russia and Western Siberia in different landscape zones in summer. Zonal landscapes with a significant change in climate parameters in the 1991–2020 period of warming were identified, connections between changes of climate parameters and landscape characteristics were determined, climate trends of parameters in particular landscape zones were considered. In the 1991–2020 summer period of warming, significant changes in climate parameters were identified in subboreal landscapes from forest steppe to semi-desert on the European part of Russia. A pronounced warming, a decrease of precipitation total, evaporation and soil water are noted. In Western Siberia in arctic and boreal landscapes, a warming in June and August is observed, which led to an increase of evaporation and soil draining. In boreal landscapes of the European part of Russia and subboreal landscapes of Western Siberia, significant changes in climate parameters did not occur. The analysis of connection between evaporation with soil water and temperature with precipitation in landscape zones indicates about its reliance on landscape zone. Temperature has the most impact on evaporation and topsoil water, it is positive in arctic and boreal landscapes and negative in subboreal ones. Precipitation has the most positive impact in subboreal landscapes. In boreal landscapes, a significant temperature rise may be insufficient for a significant increase of evaporation, apparently due to the impact of dense vegetation cover with a slow heat exchange. In subboreal landscapes, a significant temperature rise leads to a significant negative response of evaporation due to a quick heat exchange.

About the Authors

T. B. Titkova
Institute of Geography RAS
Russian Federation

Moscow



A. N. Zolotokrylin
Institute of Geography RAS
Russian Federation

Moscow



References

1. Bardin M.Yu., Rankova E.Ya., Samokhina O.F. Temperature extremes in June and July 2016. Fundamental. i Prikladn. Klimatol., 2016, no. 2, pp. 143–148. (In Russ.).

2. Bokuchava D.D., Semenov V.A. Analysis of surface air temperature anomalies in the Northern hemisphere in the 20th century using observational and reanalysis data. Fundamental. i Prikladn. Klimatol., 2018, no. 1, pp. 28–51. (In Russ.). https://doi.org/10.21513/2410-8758-2018-1-28-51

3. Bouwer L.M. Observed and projected impacts from extreme weather events: Implications for loss and damage. In Loss and Damage from Climate Change. Springer: Cham, Switzerland, 2019, pp. 63–82.

4. Cherenkova E.A. Trends in changes in atmospheric and soil moisture at the beginning of the 21st century on the European territory of Russia according to satellite and ground data. In Proceedings of the 19th Intern. Conf. “Modern problems of remote sensing of the Earth from space”. Moscow: Kosmicheskie Issledovaniya Ross. Akad. Nauk, 2021. 390 p.

5. Cherenkova E.A. Influence of changes in large-scale atmospheric circulation and ocean surface temperature on trends in summer precipitation in the European North of Russia according to ground and satellite data. Sovrem. Probl. Distantsion. Zondirovaniya Zemli iz Kosmosa, 2018, vol. 15, no. 5, pp. 229–238. (In Russ.).

6. Cherenkova E.A. Seasonal precipitation in the east European plain during the periods of warm and cool anomalies of the north Atlantic surface temperature. Izv. Akad. Nauk, Ser. Geogr., 2017, no. 5, pp. 72–81. (In Russ.). https://doi.org/10.7868/s0373244417050061

7. Demchenko P.F., Semenov V.A. Estimation of uncertainty in surface air temperature climatic trends related to the internal dynamics of the atmosphere. Dokl. Earth Sci., 2017, vol. 476, no. 1, pp. 1105–1108. https://doi.org/10.1134/S1028334X17090239

8. Global climate and soil cover in Russia: manifestations of drought, prevention measures, control, elimination of consequences and adaptation measures (agriculture and forestry). Moscow, 2021, vol. 3, 700 p.

9. Golovinov E.E., Vasil’yeva N.A. Comparison of long-term meteorological characteristics according to reanalysis and ground-based observations on the territory of the Moscow region. Melioratsiya, Upravlenie Vodnymi Resursami i Agrofizika, 2022, vol. 12, no. 3, pp. 92–105. (In Russ.). https://doi.org/10.31774/2712-9357-2022-12-3-92-105

10. Grigor’ev V.Yu., Frolova N.L., Kireeva M.B., Stepanenko V.M. Otsenka tochnosti dannykh reanaliza ERA-5. In Trudy IX Mezhdunarodnoi nauchno-prakticheskoi konferentsii “Morskie issledovaniya i obrazovanie (MARESEDU-2020)”. Moscow, 2020, vol. 2, pp. 47–50. (In Russ.).

11. Gruza G.V., Ran’kova E.Ya. Dynamic climatic norms of air temperature. Meteorol. i Gidrol., 2012a, no. 12, pp. 5–18. (In Russ.).

12. Gruza G.V., Ran’kova E.Ya. Nablyudaemye i ozhidaemye izmeneniya klimata Rossii: temperatura vozdukha [Observed and Expected Climate Changes in Russia: Air Temperature]. Obninsk: FGBU “VNIIGMI-MCD”, 2012b. 194 p.

13. IPCC. Fifth Assessment Report of the Intergovernmental Panel on Climate Change (AR5). Cambridge, United Kingdom; New York, USA: Cambridge University Press, 2013.

14. Kiktev D.V., Size D., Alexander L. Comparison of longterm averages and trends in annual temperature and precipitation extremes based on modeling and observational data. Izv. Akad. Nauk, Ser. Fizika Atmosfery i Okeana, 2009, vol. 45, no. 3, pp. 305–315. (In Russ.).

15. Klein C., Bliefernicht J., Heinzeller D., Gessner U., Klein I., Kunstmann H. Feedback of observed interannual vegetation change: A regional climate model analysis for the West African monsoon. Clim. Dyn., 2017, vol. 48, pp. 2837–2858.

16. Munang R., Thiaw I., Alverson K., Liu J., Han Z. The role of ecosystem services in climate change adaptation and disaster risk reduction. Curr Opin Environ Sustain, 2013, no. 5, pp. 1–6. https://dx.doi.org/10.1016/j.cosust.2013.02.002

17. Muñoz-Sabater J., Dutra E., Agustí-Panareda A., Albergel C., Arduini G., Balsamo G., Boussetta S., Choulga M., Harrigan S., Hersbach H., Martens B., Miralles D., Piles M., Rodríguez-Fernández J., Zsoter E., Buontempo C., Thépaut J. ERA5-Land: a state-of-the-art global reanalysis dataset for land applications. Earth Syst. Sci. Data, 2021, no. 13, pp. 4349–4383. https://doi.org/10.5194/essd-13-4349-2021

18. National Atlas of Russia. Landscape map. 1 : 30000000. Moscow, 2007, vol. 2, 331 p. https://nationalatlas.ru/tom2/331.html

19. Overland J., Dethloff K., Francis J., Hall R., Hanna E., Kim S.J., Screen J., Shepherd T.G., Vihma T. Nonlinear response of midlatitude weather to the changing Arctic. Nat. Clim. Chang., 2016, vol. 6, pp. 992–999. https://doi.org/10.1038/NCLIMATE3121

20. Pavlenko V.A., Sergeev A.A. Climate warming in Western Siberia and possible environmental and economic consequences. SGGA Novosibirsk, 2006, pp. 1–7. (In Russ.).

21. Perevedentsev Yu.P., Vasiliev A.A., Sherstyukov B.G., Shantalinsky K.M. Climatic changes in Russia in the late 20th – early 21st century. Meteorol. i Gidrol, 2021, no. 10, pp. 14–26. (In Russ.).

22. Popova V.V. Modern climate changes in the north of Eurasia as a manifestation of large-scale atmospheric circulation variations. Fundamental. i Priklad. Klimatol., 2018, no. 1, pp. 84–111. (In Russ.). https://doi.org/10.21513/2410-8758-2018-1-84-111

23. Semenov V.A., Latif M., Dommenget D., Keenlyside N.S., Strehz A., Martin T., Park W. The impact of North Atlantic-Arctic multidecadal variability on Northern Hemisphere surface air temperature. J. Clim., 2010, vol. 23 (21), pp. 5668–5677. https://doi.org/10.1175/2010JCLI3347.1

24. Singh R.P., Roy S., Kogan F. Vegetation and temperature condition indices from NOAA AVHRR data for drought monitoring over India. Int. J. Remote Sens., 2003, no. 24, pp. 4393–4402. https://doi.org/10.1080/0143116031000084323

25. Vtoroi otsenochnyi doklad Rosgidrometa ob izmeneniyakh klimata i ikh posledstviyakh na territorii Rossiiskoi Federatsii [The Second Assessment Report of Roshydromet on Climate Change and its Consequences on the Territory of the Russian Federation]. Chapters: 1.2.3.; 1.3.2. Moscow: Roshydromet, 2014. 1009 p.

26. Tretii otsenochnyi doklad ob izmeneniyakh klimata i ikh posledstviyakh na territorii Rossiiskoi Federatsii [The Third Assessment Report on Climate Change and Their Consequences on the Territory of the Russian Federation]. St.-Petersburg: Haukoemkie Tekhnologii; Roshydromet. 2022. 676 p.

27. Ting M., Kushnir Y., Seager R., Li C. Forced and internal twentieth-century SST trends in the North Atlantic. J. Clim., 2009, no. 22, pp. 1469–1481. https://doi.org/10.1175/2008JCLI2561.1

28. Tishkov A.A., Belonovskaya E.A., Weisfeld M.A., Glazov P.M., Lappo E.G., Morozova O.V., Pokrovskaya I.V., Tertitsky G.M., Titova S. V., Tsarevskaya N.G. Regional biogeographic effects of “fast” climate changes in the Russian arctic in the 21st century. Arktika: Ekol. i Ekon., 2020, no. 2 (38), pp. 31–44. (In Russ.). https://doi.org/10.25283/2223-4594-2020-2-31-44

29. Titkova T.B., Zolotokrylin A.N. Regional irregularity of summer warming in the continental Arctic. Arktika: Ekol. i Ekon., 2021, no. 3, pp. 374–384. (In Russ.).

30. Titkova T.B., Vinogradova V.V. The response of vegetation to climate change in boreal and subarctic landscapes at the beginning of 21 century. Sovrem. Probl. Distantsionnogo Zondirovaniya Zemli iz Kosmosa, 2015, vol. 12, no. 3, pp. 75–86. (In Russ.).

31. Titkova T.B., Zolotokrylin A.N. Summer climatic changes in the south of European Russia. Fundamental. i Priklad. Klimatol., 2022, vol. 8, no. 1, pp. 107–121. (In Russ.). https://doi.org/10.21513/2410-8758-2022-1-107-121

32. Wang X., Wu C., Peng D., Gonsamo A., Liu Z. Snow cover phenology affects alpine vegetation growth dynamics on the Tibetan Plateau: Satellite observed evidence, impacts of different biomes, and climate drivers. Agric. For. Meteorol., 2018, no. 256, pp. 61–74.

33. Wu M., Schurgers G., Rummukainen M., Smith B., Samuelsson P., Jansson C., Siltberg J., May W. Vegetation–climate feedbacks modulate rainfall patterns in Africa under future climate change. Earth Syst. Dyn., 2016, no. 7, pp. 627–647. https://doi.org/10.5194/esd-7-627-2016

34. Zolotokrylin A.N., Cherenkova E.A., Titkova T.B. Bioclimatic sub-humid zone on the plains of Russia: droughts, desertification/degradation. Arid. Ekosist., 2018, vol. 24, no. 1 (74), pp. 13–20. (In Russ.).

35. Zolotokrylin A.N., Titkova T.B. Climatic factor of vegetation dynamics in arid lands of the European territory of Russia. In Problemy ekologicheskogo monitoringa i modelirovaniya ekosistem [Problems of Ecological Monitoring and Modeling of Ecosystems]. Moscow: IGKE, 2009, vol. 22, pp. 79–91.

36. Zolotokrylin A.N., Titkova T.B., Cherenkova E.A. Humidification of drylands in European Russia: the present and future. Arid. Ekosist., 2014, vol. 4, no. 2, pp. 49–54. (In Russ.).


Review

For citations:


Titkova T.B., Zolotokrylin A.N. The Climate of Zonal Plain Landscapes of Russia during the Modern Global Warming in Summer. Izvestiya Rossiiskoi Akademii Nauk. Seriya Geograficheskaya. 2023;87(3):391–402. (In Russ.) https://doi.org/10.31857/S2587556623030111. EDN: QTNESR

Views: 198


ISSN 2587-5566 (Print)
ISSN 2658-6975 (Online)