Preview

Comparative Analysis and Assessment of Methodologies Applied in the Russian Federation for Calculating Greenhouse Gas Absorption by Forest Ecosystems

https://doi.org/10.31857/S2587556623040131

EDN: ZNHULU

Abstract

The assessment of the forest carbon balance is of great importance for the building of the climate policy of the Russian Federation at both national and international levels. At the same time, the results of such assessments conducted by different scientific groups vary depending on the approaches and methodologies used. This study considers the key systems for assessing the carbon balance of forest ecosystems in the Russian Federation: Integrated Land Information System, IZIS (International Institute for Applied Systems Analysis, Austria), The Carbon Budget Model of the Canadian Forest Sector, CBM-CFS (Canada), Regional Forest Carbon Budget Assessment, ROBUL (Russia), the methodology of the All-Russian Research Institute of Forestry and Mechanization of Forestry (Russia). The methodologies are compared with respect to their compliance with the IPCC requirements. The study identifies the individual characteristics of the methodologies and their application, and proposes recommendations for improving the accuracy of carbon balance estimates. The main key differences between the estimates of different scientific groups, include: compliance with the recommendations of IPCC; selection between the methods of “gain−loss” and “stock−difference”; approach to the identification of managed forests; calculation method of forest fire emissions; sources of initial data, and their reliability. The study notes the importance of scientific discussion and the necessity of compliance of the methodologies with international standards, emphasizes the problem of outdated initial data and underestimation of forest fire emissions, regardless of the chosen methodology. In general, the currently used methodology satisfactorily estimates forest carbon balance. It is recommended to improve the estimates based on remote sensing data and the second cycle of the State Forest Inventory (SFI). The implementation of the Strategy of socio-economic development of the Russian Federation with low greenhouse gas emissions until 2050 should be provided not only by changes in the method of calculating the carbon balance, but rather through real forest protection measures. Any significant adjustment to the methodology must be accompanied by an adjustment to national climate goals.

About the Authors

D. D. Sorokina
Izrael Institute of Global Climate and Ecology
Russian Federation

Moscow



A. V. Ptichnikov
Institute of Geography, Russian Academy of Sciences
Russian Federation

Moscow



A. A. Romanovskaya
Izrael Institute of Global Climate and Ecology
Russian Federation

Moscow



References

1. Bartalev S.A., Egorov V.A., Zharko V.O., Lupyan E.A., Plotnikov D.E., Khvostikov S.A., Shabanov N.V. Sputnikovoe kartografirovanie rastitel’nogo pokrova Rossii [Satellite Mapping of the Vegetation Cover of Russia]. Moscow: IKI RAS Publ., 2016. 208 p.

2. Fedorov B.G. Rossiiskii uglerodnyi balans: monografiya [Russian Carbon Balance: Monograph]. Moscow: Nauch. Konsul’tant Publ., 2017.

3. Fedorov B.G., Moiseev B.N., Sinyak Yu.V. Absorption capacity of Russian forests and carbon dioxide emissions from energy facilities. Probl. Prognoz., 2011, no. 3, pp. 127–142. (In Russ.).

4. Filipchuk A.N., Moiseev B.N., Malysheva N.V. Methodology for accounting for CO2 uptake by forests of the Russian Federation. In Lesa Rossii: politika, promyshlennost’, nauka, obrazovanie: materialy vtoroi mezhdun. nauch.-tekh. konf., S.-Peterb., 24–26 maya 2017 g. Tom 2 [Russian Forests: Politics, Industry, Scince, Education: 2nd Int. Sci.-Teck. Conf., S.-Peterb., May 24–26, 2017. Vol. 2]. Ged’o V.M., Ed. St.-Peterb.: SPbGLTU Publ., 2017, pp. 155–158. (In Russ.).

5. Filipchuk A.N., Moiseev B.N., Malysheva N.V. New aspects of assessment of absorption of greenhouse gases the Russian forests in the context of the Paris agreement on climate change. Lesokhoz. Inform.: Elektron. Setev. Zh., 2017, no. 1, pp. 88–98. (In Russ.).

6. Grassi G., Pilli R., House J., Federici S., Kurz W.A. Sciencebased approach for credible accounting of mitigation in managed forests. Carbon Balance Manage., 2018, vol. 13, no. 8. https://doi.org/10.1186/s13021-018-0096-2

7. IPCC, 2014. 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories. Wetlands. Hiraishi T., Krug T., Tanabe K., Srivastava N., Baasansuren J., Fukuda M., Troxler T.G., Eds. Switzerland: IPCC, 2014.

8. IPCC, 2019. 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories. Buendia E.C., Tanabe K., Kranjc A., Baasansuren J., Fukuda M., Ngarize S., Osako A., Pyrozhenko Y., Shermanau P., Federici S., Eds. Switzerland: IPCC, 2019.

9. Kokorin A.O., Lugovaya D.L. Absorption of CO2 by forests of Russia in the context of the Parisian agreement. Ustoich. Lesopol., 2018, vol. 54, no. 2, pp. 13–18. (In Russ.).

10. Korotkov V.N., Romanovskaya A.A. Estimating carbon losses from stand mortality from fire in the national greenhouse gas inventory: the need to use ground and remote monitoring data. In Nauchnye osnovy ustoichivogo upravleniya lesami, posvyashchennoi 30-letiyu TsEPL RAN. Mater. Vserossiiskoi nauch. konf. s mezhdun. uchastiem, 25–29 aprelya 2022 g. [Scientific Foundations of Sustainable Forest Management, Dedicated to the 30th Anniversary of CEPF RAS. All-Russian Sci. Int. Conf., April 25–29, 2022]. Moscow: TsEPL RAN Publ., 2022, pp. 284–286. (In Russ.).

11. Korzukhin M.D., Korotkov V.N. Modification of the ROBUL model for calculating the carbon balance of forests in Russia. Fundam. Priklad. Klimatol., 2018, vol. 3, pp. 30–53. (In Russ.).

12. Kurnaev S.F. Lesorastitel’noe raionirovanie SSSR [Forest Zoning of the USSR]. Moscow: Nauka Publ., 1973.

13. Kurz W.A., Birdsey R.A., Mascorro V.S., Greenberg D., Dai Z., Olguín M., Colditz R. Integrated Modeling and Assessment of North American Forest Carbon Dynamics Technical Report: Tools for monitoring, reporting and projecting forest greenhouse gas emissions and removals. Montreal: Commission for Environmental Cooperation, 2016. 125 p.

14. Kurz W.A., Dymond C.C., White T., Stinson G., Shaw C.H., Rampley G.J., Smyth C., Simpson B.N., Neilson E.T., Trofymow J.A., Metsaranta J., Apps M.J. CBM– CFS3: a model of carbon dynamics in forestry and land use change implementing IPCC standards. Ecol. Modelling, 2009, vol. 220, no. 4, pp. 480–504. https://doi.org/10.1016/j.ecolmodel.2008.10.018

15. Luyssaert S., Schulze E.D., Börner A., Knohl A., Hessenmöller D., Law B.E., Ciais P., Grace J. Old-growth forests as global carbon sinks. Nature, 2008, vol. 455, pp. 213–215. https://doi.org/10.1038/nature07276

16. Malysheva N.V., Moiseev B.N., Filipchuk A.N., Zolina T.A. The methods of carbon balance estimation in forest ecosystems and their application to calculate the annual carbon sequestration. Lesnoi Vestn., 2017, vol. 21, no. 1, pp. 4–13. (In Russ.). https://doi.org/10.18698/2542-1468-2017-1-4-13

17. MGEIK. Rukovodyashchie printsipy natsional’nykh inventarizatsii parnikovykh gazov MGEIK 2006 g. Podgotovleny Programmoi MGEIK po natsional’nym kadastram parnikovykh gazov. Tom 1–5 [IPCC. 2006 IPCC Guidelines for National Greenhouse Gas Inventories. Prepared by the IPCC National Greenhouse Gas Inventory Program. Vol. 1–5]. Iggleston S., Buendia L., Miva K., Ngara T., Tanabe K., Eds. Khayama: IGES Publ., 2006.

18. Moiseev B.N. Balance of organic carbon inforests and plant cover of Russia. Lesn. Khozyaistvo, 2007, no. 2, pp. 13– 16. (In Russ.).

19. Mukhortova L., Schepaschenko D., Shvidenko A., Mccallum I. A system for heterotrophic soil respiration assessment of Russian land. In International conference IBFRA. Boreal Forests in a Changing World: Challenges and Needs for Action. Krasnoyarsk, 2011, pp. 86–90.

20. Natsional’nyi doklad o kadastre antropogennykh vybrosov iz istochnikov i absorbtsii poglotitelyami parnikovykh gazov, ne reguliruemykh Monreal’skim protokolom za 1990– 2018 gg. Ch. 1 [National Report on the Inventory of Anthropogenic Emissions by Sources and Abstraction by Sinks of Greenhouse Gases not Controlled by the Montreal Protocol for 1990–2018. Part 1]. Moscow: Rosgidromet Publ., 2020.

21. Natsional’nyi doklad o kadastre antropogennykh vybrosov iz istochnikov i absorbtsii poglotitelyami parnikovykh gazov, ne reguliruemykh Monreal’skim protokolom za 1990– 2019 gg. Ch. 1 [National Report on the Inventory of Anthropogenic Emissions by Sources and Abstraction by Sinks of Greenhouse Gases not Controlled by the Montreal Protocol for 1990–2019. Part 1]. Moscow: Rosgidromet Publ., 2021.

22. Natsional’nyi doklad o kadastre antropogennykh vybrosov iz istochnikov i absorbtsii poglotitelyami parnikovykh gazov, ne reguliruemykh Monreal’skim protokolom za 1990– 2021 gg. Ch. 1 [National Report on the Inventory of Anthropogenic Emissions by Sources and Abstraction by Sinks of Greenhouse Gases not Controlled by the Montreal Protocol for 1990–2021. Part 1]. Moscow: Rosgidromet Publ., 2022.

23. Newell J.P., Vos R.O. Accounting for forest carbon pool dynamics in product carbon footprints: Challenges and opportunities. Environ. Impact Asses. Rev., 2012, vol. 37, pp. 23–36. https://doi.org/10.1016/j.eiar.2012.03.005

24. Operational-Scale Carbon Budget Model of the Canadian Forest Sector (CBM-CGS3) Version 1.0. Kull S.J., Kurz W.A., Rampley G.J., Banfield G.E., Schivatcheva R.K., Apps M.J., Eds. Ottawa: Northern Forestry Centre, 2010. 112 p.

25. Romanovskaya A.A., Trunov A.A., Korotkov V.N., Karaban’ R.T. The problem of accounting for the absorptive capacity of Russian forests in the Paris Agreement. Lesoved., 2018, no. 5, pp. 323–334. (In Russ.). https://doi.org/10.1134/S0024114818050066

26. Rukovodyashchie ukazaniya po effektivnoi praktike dlya zemlepol’zovaniya, izmenenii v zemlepol’zovanii i lesnogo khozyaistva. Programma MGEIK po natsional’nym kadastram parnikovykh gazov [Good Practice Guidance for Land Use, Land Use Change and Forestry. IPCC Program on National Greenhouse Gas Inventories]. Penman D., Gitarskii M., Khiraishi T. et al., Eds. Genève, 2003. 649 p.

27. Schepaschenko D., Moltchanova E., Fedorov S., Karminov V., Ontikov P., Santoro M., See L., Kositsyn V., Shvidenko A., Romanovskaya A., Korotkov V., Lesiv M., Bartalev S., Fritz S., Shchepashchenko M., Kraxner F. Russian forest sequesters substantially more carbon than previously reported. Sci. Rep., 2021, vol. 11, no. 1, pp. 1–7. https://doi.org/10.1038/s41598-021-92152-9

28. Shvidenko A., Nilsson S. A synthesis of the impact of Russian forests on the global carbon budget for 1961–1998.

29. Tellus, 2003, vol. 55B, pp. 391–415. https://doi.org/10.3402/tellusb.v55i2.16722

30. Shvidenko A., Nilsson S. Dynamics of Russian forests and the carbon budget in 1961–1998: an assessment based on longterm forest inventory data. Climatic Change, 2002, vol. 55, pp. 5–37. https://doi.org/10.1023/A:1020243304744

31. Shvidenko A.Z., Shepashchenko D.G. Carbon budget of Russian forests. Sibir. Lesnoi Zh., 2014. (In Russ.).

32. Tomppo E., Heikkinen J., Henttonen N., Ihalainen A., Katila M., Mäkelä N., Tuomainen T., Vainikainen N. Designing and Conducting a Forest Inventory – case: 9th National Forest Inventory of Finland. London; New York: Springer Publ., 2011. 270 p.

33. Zamolodchikov D.G., Grabovskii V.I., Kraev G.N. Dynamics of the carbon budget of the forests of Russia in two last decades. Lesoved., 2011. (In Russ.).

34. Zamolodchikov D.G., Grabovskii V.I., Kurts V.A. Carbon balance management of Russian forests: Past, Present and Future. Ustoich. Lesopol’zov., 2014. (In Russ.).

35. Zamolodchikov D.G., Grabovskii V.I., Kurts V.A. Effect of forest management on the volume of the carbon balance of forests in Russia: predictive analysis on CBM-CFS3 model. In Trudy SPbNIILH [Proceedings of the St. Petersburg Research Institute of Forestry], 2014. (In Russ.).


Review

For citations:


Sorokina D.D., Ptichnikov A.V., Romanovskaya A.A. Comparative Analysis and Assessment of Methodologies Applied in the Russian Federation for Calculating Greenhouse Gas Absorption by Forest Ecosystems. Izvestiya Rossiiskoi Akademii Nauk. Seriya Geograficheskaya. 2023;87(4):497–511. (In Russ.) https://doi.org/10.31857/S2587556623040131. EDN: ZNHULU

Views: 326


ISSN 2587-5566 (Print)
ISSN 2658-6975 (Online)