RuFlux: The Network of the Eddy Covariance Sites in Russia
https://doi.org/10.31857/S2587556623040052
EDN: CTGOHO
Abstract
For the first time, the information is summarized on the history of establishment, the state of observations and the main scientific results on sites included in RuFlux, the Russian eddy covariance network for the monitoring of greenhouse gases (GHG). Eddy covariance technique provides estimates of GHG fluxes at the level of ecosystems. The long-term series of GHG fluxes (more than 190 site-years of observations) have been obtained. Up to the end of 2022, 86% of the sites of the RuFlux network are located in forests and wetlands, 77% of all sites are in the middle and southern taiga. Almost all undisturbed ecosystems in Russia are the sinks of CO2 from the atmosphere with a range of average annual estimates of net absorption from 80 to 240 g C m–2 yr–1. The GHG balance is determined by a complex of abiotic and biotic factors. The average long-term net CO2 absorption is higher in permafrost Siberian larch forests than in European spruce forests. When moving from west to east, the intensity of CO2 sink in the middle of summer increases, and the emission of CO2 in the middle of winter decreases sharply. Natural and anthropogenic disturbances lead to the transformation of the carbon balance by increasing the release of CO2 into the atmosphere. RuFlux network covers a wide range of types of ecosystems, but it is needed to organize more GHG sites in tundra, northern taiga, forest-steppe, steppe, and semi-deserts; in the ecosystems disturbed by humans (including fields) and in the ecosystems with successions caused by natural disturbances.
Keywords
About the Authors
O. A. KurichevaRussian Federation
Moscow
V. K. Avilov
Russian Federation
Moscow
A. V. Varlagin
Russian Federation
Moscow
M. L. Gitarskiy
Russian Federation
Moscow
A. A. Dmitrichenko
Russian Federation
Khanty-Mansiysk
E. A. Dyukarev
Russian Federation
Khanty-Mansiysk
Tomsk
S. V. Zagirova
Russian Federation
Syktyvkar
D. G. Zamolodchikov
Russian Federation
Moscow
V. I. Zyryanov
Russian Federation
Krasnoyarsk
D. V. Karelin
Russian Federation
Moscow
S. V. Karsanaev
Russian Federation
Yakutsk
I. N. Kurganova
Russian Federation
Pushchino
E. D. Lapshina
Russian Federation
Khanty-Mansiysk
A. P. Maximov
Russian Federation
Yakutsk
T. Ch. Maximov
Russian Federation
Yakutsk
V. V. Mamkin
Russian Federation
Moscow
A. S. Marunich
Russian Federation
Valday
M. N. Miglovets
Russian Federation
Syktyvkar
O. A. Mikhailov
Russian Federation
Syktyvkar
A. V. Panov
Russian Federation
Krasnoyarsk
A. V. Prokushkin
Russian Federation
Krasnoyarsk
N. V. Sidenko
Russian Federation
Krasnoyarsk
A. V. Shilkin
Russian Federation
Moscow
Obninsk
Ю. A. Kurbatova
Russian Federation
Moscow
References
1. Бурба Г.Г., Курбатова Ю.А., Куричева О.А., Авилов В.К., Мамкин В.В. Метод турбулентных пульсаций. Краткое практическое руководство. М.: ИПЭЭ им. А.Н. Северцова РАН, 2016. 223 с.
2. Карелин Д.В., Замолодчиков Д.Г., Шилкин А.В., Куманяев А.С., Попов С.Ю., Тельнова Н.О., Гитарский М.Л. Влияние прогрессирующего распада древостоя на углеродный обмен еловых лесов // ДАН. Сер. наук о Земле. 2020. Т. 493. № 1. С. 89–93.
3. Чебакова Н.М., Выгодская Н.Н., Арнет А., БелеллиМаркезини Л., Курбатова Ю.А., Парфенова Е.И., Валентини Р., Верховец С.В., Ваганов Е.А., Шульце Е.Д. Энерго- и массообмен и продуктивность основных экосистем Сибири (по результатам измерений методом турбулентных пульсаций) 2. Углеродный обмен и продуктивность // Изв. РАН. Сер. биол. 2014. № 1. С. 65–75.
4. Alekseychik P., Mammarella I., Karpov D., Dengel S., Terentieva I., Sabrekov A., Glagolev M., Lapshina E. Net ecosystem exchange and energy fluxes measured with eddy covariance technique in a West Siberian bog // Atmospheric Chem. and Phys. 2017. Vol. 17. P. 9333–9345. https://doi.org/10.5194/acp-2017-43
5. Baldocchi D.D. How eddy covariance flux measurements have contributed to our understanding of Global Change Biology // Global Change Biology. 2020. Vol. 26. № 1. P. 242–260.
6. Dolman A.J., Shvidenko A., Schepaschenko D., Ciais P., Tchebakova N., Chen T., van der Molen M.K., Belelli Marchesini L., Maximov T.C., Maksyutov S., Schulze E.-D. An estimate of the terrestrial carbon budget of Russia using inventory-based, eddy covariance and inversion methods // Biogeosciences. 2012. Vol. 9. № 12. P. 5323–5340.
7. Heimann M. The EUROSIBERIAN CARBONFLUX project // Tellus B: Chemical and Physical Meteorology. 2002. Vol. 54. № 5. P. 417–419.
8. Karelin D.V., Zamolodchikov D.G., Shilkin A.V., Popov S.Y., Kumanyaev A.S., de Gerenyu V.O., Tel’nova N.O., Gitarskiy M.L. The effect of tree mortality on CO2 fluxes in an old-growth spruce forest // European J. of Forest Research. 2021. Vol. 140. № 2. P. 287–305.
9. Kurbatova J., Li C., Varlagin A., Xiao X., Vygodskaya N. Modeling carbon dynamics in two adjacent spruce for- ests with different soil conditions in Russia // Biogeosciences. 2008. Vol. 5. P. 969–980.
10. Kurbatova J., Li C., Tatarinov F., Varlagin A., Shalukhina N., Olchev A. Modeling of the carbon dioxide fluxes in European Russia peat bogs // Environmental Research Lett. 2009. Vol. 4. № 4. P. 045022.
11. Mamkin V., Kurbatova J., Avilov V., Ivanov D., Kuricheva O., Varlagin A., Yaseneva I., Olchev A. Energy and CO2 exchange in an undisturbed spruce forest and clear-cut in the Southern Taiga // Agric. For. Meteorol. 2019a. Vol. 265. P. 252–268.
12. Mamkin V.V., Mukhartova Y.V., Diachenko M.S., Kurbatova J.A. Three-year variability of energy and carbon dioxide fluxes at clear-cut forest site in the European southern taiga // Geography. Environment, Sustainability. 2019b. Vol. 12. № 2. P. 197–212.
13. Mamkin V., Varlagin A., Yaseneva I., Kurbatova J. Response of Spruce Forest Ecosystem CO2 Fluxes to Inter-Annual Climate Anomalies in the Southern Taiga // Forests. 2022. Vol. 13. № 7. P. 1019. https://doi.org/10.3390/f13071019
14. Mamkin V., Avilov V., Ivanov D., Varlagin A., Kurbatova J. Interannual variability of the ecosystem CO2 fluxes at paludified spruce forest and ombrotrophic bog in southern taiga // Atmospheric Chem. and Phys. 2023. Vol. 23. № 3. P. 2273–2291. https://doi.org/10.5194/acp-23-2273-2023
15. Maximov T.C., Maksimov A.P., Kononov A.V., Kotani A., Dolman A.J. Carbon Cycles in Forests // Water and Carbon Dynamics / T. Ohta, T. Hiyama, Y. Iijima, A. Kotani, T.C. Maximov (Eds.). Singapore: Springer Nature Singapore Pte Ltd., 2019. P. 69–100. https://doi.org/10.1007/978-981-13-6317-7
16. Mikhaylov O.A., Zagirova S.V., Miglovets M.N. Seasonal and inter-annual variability of carbon dioxide exchange at a boreal peatland in north-east European Russia // Mires and Peat. 2019. Vol. 24. № 34. P. 1–16.
17. Schulze E.-D., Lloyd J., Kelliher F.M., Wirth C., Rebmann C., Lühker B., Mund M., Knohl A., Milyukova I.M., Schulze W., Ziegler W., Varlagin A.V., Sogachev A.F., Valentini R., Dore S., Grigoriev S., Kolle O., Panfyorov M.I., Tchebakova N., Vygodskaya N.N. Productivity of forests in the Eurosiberian boreal region and their potential to act as a carbonsink – a synthesis // Global Change Biology. 1999. Vol. 5. № 6. P. 703–722.
18. Schulze E.-D., Vygodskaya N.N., Tchebakova N.M., Czimczik C.I., Kozlov D.N., Lloyd J., Mollicone D., Parfenova E., Sidorov K.N., Varlagin A.V., Wirth Ch. The Eurosiberian transect: An introduction to the experimental region // Tellus B: Chemical and Physical Meteorology. 2002a. Vol. 54. № 5. P. 421–428.
19. Zagirova S.V., Mikhailov O.A., Elsakov V.V. Carbon Dioxide and Water Exchange between Spruce Forest and Atmosphere in Spring–Summer under Different Weather Conditions // Contemporary Problems of Ecology. 2019b. Vol. 12. № 1. P. 45–58.
Review
For citations:
Kuricheva O.A., Avilov V.K., Varlagin A.V., Gitarskiy M.L., Dmitrichenko A.A., Dyukarev E.A., Zagirova S.V., Zamolodchikov D.G., Zyryanov V.I., Karelin D.V., Karsanaev S.V., Kurganova I.N., Lapshina E.D., Maximov A.P., Maximov T.Ch., Mamkin V.V., Marunich A.S., Miglovets M.N., Mikhailov O.A., Panov A.V., Prokushkin A.V., Sidenko N.V., Shilkin A.V., Kurbatova A. RuFlux: The Network of the Eddy Covariance Sites in Russia. Izvestiya Rossiiskoi Akademii Nauk. Seriya Geograficheskaya. 2023;87(4):512–535. (In Russ.) https://doi.org/10.31857/S2587556623040052. EDN: CTGOHO