Rewetting of Disused Drained Peatlands and Reduction of Greenhouse Gas Emissions
https://doi.org/10.31857/S258755662304012X
EDN: BFZXYJ
Abstract
Drained peatlands are a significant source of greenhouse gas emissions to the atmosphere. When abandoned, they become the most likely sites of peat fires. An effective way to reduce greenhouse gas emissions and prevent peatland fires in disused drained peatlands is through rewetting and wetland restoration. These can make significant contributions to the implementation of the Paris Climate Agreement within the Land Use, LandUse Change and Forestry sector and, ultimately, to climate change mitigation. An approach for estimating greenhouse gas emission reductions following rewetting, applicable to national and regional accounting, as well as to specific rewetting projects, is presented. It includes a methodology for determining effectively rewetted areas that can be considered wetlands, the application of IPCC greenhouse gas emission factors to said sites, and an uncertainty assessment. Starting from 2020 the Russian Federation National Report of anthropogenic emissions by sources and removals by sinks of greenhouse gasses not controlled by the Montreal Protocol utilised this approach in its inclusion of rewetted peatlands. An assessment of greenhouse gas emission reductions is presented using the example of a 1500 ha section of a peatland within the Fire Hazardous Peatland Rewetting Programme in Moscow Oblast (2010–2013). CO2 emission reductions were cumulatively 33.4 thous. t by 2022 (taking into account nitrous oxide fluxes, dissolved organic carbon removal and increased CH4 emissions—20 thous. t CO2-eq.) and are projected to reach almost 113 (68) thous. t by 2050. Greenhouse gas emission reductions not yet included as well as possible ways of accounting for them in the future are also noted.
Keywords
About the Authors
A. A. SirinRussian Federation
Uspenskoe, Moscow oblast
M. A. Medvedeva
Russian Federation
Uspenskoe, Moscow oblast
V. Yu. Itkin
Russian Federation
Uspenskoe, Moscow oblast
Moscow
References
1. A Quick Scan of Peatlands in Central and Eastern Europe. Minayeva T., Sirin A., Bragg O., Eds. Wageningen: Wetlands Int., 2009. 132 p.
2. Ahmad S., Liu H., Günther A., Couwenberg J., Lennartz B. Long-term rewetting of degraded peatlands restores hydrological buffer function. Sci. Total Environ., 2020, vol. 749, p. 141571. https://doi.org/10.1016/j.scitotenv.2020.141571
3. Alekseychik P., Korrensalo A., Mammarella I., Launiainen S., Tuittila E.-S., Korpela I., Vesala T. Carbon balance of a Finnish bog: temporal variability and limiting factors based on 6 years of eddy-covariance data. Biogeosciences, 2021, vol. 18, no. 16, pp. 4681–4704. https://doi.org/10.5194/bg-18-4681-2021
4. Assessment on peatlands, biodiversity and climate change. Main report. Parish F., Sirin A., Charman D. et al., Eds. Kuala Lumpur: Global Environment Centre; Wageningen: Wetlands Int., 2008. 179 p.
5. Bonn A., Reed M., Evans C.D., Joosten H., Bain C., Farmer J., Emmer I., Couwenberg J., Moxey A., Artz R., Tanneberger F., von Unger M., Smyth M.-A., Birnie D. Investing in nature: developing ecosystem service markets for peatland restoration. Ecosyst. Serv. 2014, vol. 9, pp. 54–65. https://doi.org/10.1016/j.ecoser.2014.06.011
6. Carbon Credits from Peatland Rewetting. Climate—Biodiversity—Land Use. Tanneberger F., Wichtmann W., Eds. Stuttgart: E. Schweizerbart Science Publ., 2011. 221 p.
7. Chistotin M.V., Sirin A.A., Dulov L.E. Seasonal dynamics of carbon dioxide and methane emission from a peatland in Moscow region drained for peat extraction and agricultural use. Agrokhimiya, 2006, no. 6, pp. 54–62. (In Russ.).
8. Chistotin M.V., Suvorov G.G., Sirin A.A. The temporal pattern of methane emission from drained peat soil at pot experiment as depended on vegetation and soil moisture. Agrokhimiya, 2016, no. 12, pp. 20–33. (In Russ.).
9. Couwenberg J., Michaelis D., Joosten H., Augustin J., Bärisch S., Dubovik D., Liashchynskaya N., Michaelis D., Minke M., Skuratovich A., Joosten H. Assessing greenhouse gas emissions from peatlands using vegetation as a proxy. Hydrobiologia, 2011, no. 674, pp. 67–89. https://doi.org/10.1007/s10750-011-0729-x
10. Escobar D., Belyazid S., Manzoni S. Back to the future: restoring northern drained forested peatlands for climate change mitigation. Front. Environ. Sci., 2022, vol. 10, p. 834371. https://doi.org/10.3389/fenvs.2022.834371
11. Frolking S., Roulet N.T. Holocene radiative forcing impact of northern peatland carbon accumulation and methane emissions. Glob. Change Biol., 2007, vol. 13, no. 5, pp. 1079–1088. https://doi.org/10.1111/j.1365-2486.2007.01339.x
12. Global Peatlands Assessment – The State of the World’s Peatlands: Evidence for action toward the conservation, restoration, and sustainable management of peatlands. Main Report. Nairobi: Global Peatlands Initiative. United Nations Environment Programme, 2022. 418 p.
13. Glukhova T.V., Sirin A.A. Losses of soil carbon upon a fire on a drained forested raised bog. Eurasian Soil Sci., 2018, no. 51, pp. 542–549. https://doi.org/10.1134/S1064229318050034
14. Granath G., Moore P., Lukenbach M., Waddington J.M. Mitigating wildfire carbon loss in managed northern peatlands through restoration. Sci Rep., 2016, no. 6, p. 28498. https://doi.org/10.1038/srep28498
15. Günther A., Barthelmes A., Huth V., Joosten H., Jurasinski G., Koebsch F., Couwenberg J. Prompt rewetting of drained peatlands reduces climate warming despite methane emissions. Nat. Commun., 2020, vol. 11, p. 1644. https://doi.org/10.1038/s41467-020-15499-z
16. Huang X., Rein G. Downward spread of smouldering peat fire: The role of moisture, density and oxygen supply. Int. J. Wildland Fire., 2017, no. 26 (11), pp. 907–918. https://doi.org/10.1071/WF16198
17. IPCC, 2000. Good Practice Guidance and Uncertainty Management in National Greenhouse Gas Inventories. Methodology Report. Penman J., Kruger D., Galbally I., Hiraishi T., Nyenzi B., Emmanul S., Buendia L, Hoppaus R., Martinsen T., Meijer J., Miwa K., Tanabe K., Eds. Hayama: IGES Publ., 2000.
18. IPCC, 2003. Good Practice Guidance for Land Use, LandUse Change and Forestry. Methodology Report. Penman J., Gytarsky M., Hiraishi T., Krug T., Kruger D., Riitta P., Buendia L., Miwa K., Ngara T., Tanabe K., Wagner F., Eds. Hayama: IGES Publ., 2003.
19. IPCC, 2006. 2006 IPCC Guidelines for National Greenhouse Gas Inventories, prepared by the National Greenhouse Gas Inventories Programme. Vol. 4. Agriculture, forestry and other land use. Eggleston H.S., Buendia L., Miwa K. et al., Eds. Hayama: IGES Publ., 2006.
20. IPCC, 2014. 2013 Supplement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories: Wetlands. Hiraishi T., Krug T., Tanabe K. et al., Eds. Switzerland: IPCC, 2014.
21. IPCC 2019. 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories. Calvo Buendia E., Tanabe K., Kranjc A. et al., Eds. Switzerland: IPCC, 2019a.
22. IPCC 2019. Climate Change and Land. An IPCC special report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial ecosystems. Shukla P.R., Skea J., Calvo Buendia E. et al., Eds. Switzerland, 2019b.
23. Handbook for assessment of greenhouse gas emissions from peatlands. Applications of direct and indirect methods by LIFE Peat Restore. Jarašius L., Etzold J., Truus L., Purre A.-H., Sendžikaitė J., Strazdiņa L., Zableckis N., Pakalne M., Bociąg K., Ilomets M., Herrmann A., Kirschey T., Pajula R., Pawlaczyk P., Chlost I., Cieśliński R., Gos K., Libauers K., Sinkevičius Ž., Jurema L., Eds. Vilnius: Lithuanian Fund for Nature Publ., 2022. 201 p.
24. Joosten H., Sirin A., Couwenberg J., Laine J., Smith P. The role of peatlands in climate regulation. In Peatland Restoration and Ecosystem Services. Science, Policy and Practice. Bonn A., Allott T., Evans M. et al., Eds. Cambridge: CUP, 2016, pp. 63–76. https://doi.org/10.1017/CBO9781139177788.005
25. Laine J., Silvola J., Tolonen K., Alm J., Nykänen H., Vasander H., Sallantaus T., Savolainen I., Sinisalo J., Martikainen P.J. Effect of water-level drawdown on global climatic warming: northern peatlands. Ambio, 1996, vol. 25, no. 3, pp. 179–184.
26. Leifeld J., Menichetti L. The underappreciated potential of peatlands in global climate change mitigation strategies. Nat. Commun., 2018, no. 9, p. 1071. https://doi.org/10.1038/s41467-018-03406-6
27. Leifeld J., Wüst-Galley C., Page S. Intact and managed peatland soils as a source and sink of GHGs from 1850 to 2100. Nat. Clim. Change, 2019, no. 9, pp. 945–947. https://doi.org/10.1038/s41558-019-0615-5
28. Medvedeva M.A., Vozbrannaya A.E., Bartalev S.A., Sirin A.A. Multispectral remote sensing for assessing changes on abandoned peat extraction lands. Issled. Zemli Kosmosa, 2011, no. 5, pp. 80–88. (In Russ.).
29. Medvedeva M.A., Vozbrannaya A.E., Sirin A.A., Maslov A.A. Capabilities of multispectral remote sensing data in an assessment of the status of abandoned fire hazardous and rewetting peat extraction lands. Izv., Atmosph. Ocean. Phys., 2017, no. 53, pp. 1072–1080. https://doi.org/10.1134/S0001433817090201
30. Medvedeva M.A., Vozbrannaya A.E., Sirin A.A., Maslov A.A. Possibilities of different multispectral satellite data for monitoring of abandoned fire hazardous peatlands and effectiveness of their rewetting. Sovrem. Probl. Distant. Zondir. Zemli Kosmosa, 2019, vol. 16, no. 2, pp. 150–159. (In Russ.). https://doi.org/10.21046/2070-7401-2019-16-2-150-159
31. Medvedeva M.A., Makarov D.A., Sirin A.A. Applicability of different spectral indexes based on satellite data for peat fire area estimation. Sovrem. Prob. Distant. Zondir. Zemli Kosmosa, 2020, vol. 17, no. 5,. pp. 157–166. (In Russ.). https://doi.org/10.21046/2070-7401-2020-17-5-157-166
32. Minayeva T.Y., Sirin A.A. Peatland biodiversity and climate change. Biol. Bull. Rev., 2012, no. 2, pp. 164–175. https://doi.org/10.1134/S207908641202003X
33. Minayeva T.Y., Bragg O.M., Sirin A.A. Towards ecosystem-based restoration of peatland biodiversity. Mires Peat, 2017, no. 19, pp. 1–7. https://doi.org/10.19189/MaP.2013.OMB.150
34. Natsional’nyi doklad o kadastre antropogennykh vybrosov iz istochnikov i absorbtsii poglotitelyami parnikovykh gazov, ne reguliruemykh Monreal’skim protokolom za 1990– 2020 gg. Chast’ 1 [National Report on the Inventory of Anthropogenic Emissions from Sources and Removals by Sinks of Greenhouse Gases not Controlled by the Montreal Protocol for 1990–2020. Part 1]. Moscow: Rosgidromet Publ., 2022. 468 p.
35. Olofsson P., Foody G.M., Herold M., Stehman S.V., Woodcock C.E., Wulder M.A. Good practices for estimating area and assessing accuracy of land change. Remote Sens. Environ., 2014, vol. 148, pp. 42–57. https://doi.org/10.1016/j.rse.2014.02.015
36. Peatland ecology and forestry – a sound approach. Päivänen J., Hånell B., Eds. Helsinki: Helsingin yliopiston metsätieteiden laitos, 2012. 267 p.
37. Peatlands and climate change. Strack M., Ed. Saarijaarvi: Saarijarven Offset Oy, 2008. 223 p.
38. Perspektivnoe ispol’zovanie vyrabotannykh torfyanykh bolot: monografiya [Perspective Use of Depleted Peat Bogs: Monograph]. Panova V.V., Ed. Tver’: Triad Publ., 2013. 280 p.
39. Romanovskaya A.A., Korotkov V.N., Smirnov N.S., Karaban’ R.T., Trunov A.A. Land use contribution to the anthropogenic emission of greenhouse gases in Russia in 2000–2011. Russ. Meteorol. Hydrol., 2014, no. 3 (39), pp. 137–145. https://doi.org/10.3103/S1068373914030017
40. Rydin H., Jeglum J. The biology of peatlands. 2nd edition. Oxford: Oxford Univ. Press, 2013. 382 p.
41. Sirin A., Laine J. Peatlands and Greenhouse Gases. In Asesessment on Peatlands, Biodiversity and Climate Change. Main Report. Parish F., Sirin А., Charman D. et al., Eds. Kuala Lumpur: Global Environment Centre; Wageningen: Wetlands Int., 2008, pp. 118–138.
42. Sirin A.A., Minaeva T.Yu., Vozbrannaya A.E., Bartalev S.A. How to avoid peat fires? Nauka v Rossii, 2011, no. 2, pp. 13–21. (In Russ.).
43. Sirin A.A., Suvorov G.G., Chistotin M.V., Glagolev M.V. Values of methane emission from drainage ditches. Dinamika Okruzh. Sredy i Glob. Izm. Klimata, 2012, vol. 3, no. 2, pp. 1–10. (In Russ.).
44. Sirin A.A., Maslov A.A., Valyaeva N.A., Tsyganova O.P., Glukhova T.V. Mapping of peatlands in the Moscow oblast based on high-resolution remote sensing data. Contemp. Probl. Ecol., 2014, no. 7, pp. 808–814. https://doi.org/10.1134/S1995425514070117
45. Sirin A., Minayeva T., Yurkovskaya T. et al. Russian Federation (European Part). In Mires and peatlands of Europe: status, distribution and conservation. Joosten H., Tanneberger F., Moen A., Eds. Stuttgart: Schweizerbart Sci. Publ., 2017, pp. 589–616.
46. Sirin A., Medvedeva M., Maslov A., Vozbrannaya A. Assessing the land and vegetation cover of abandoned fire hazardous and rewetted peatlands: comparing different multispectral satellite data. Land, 2018, no. 7 (2), 71 p. https://doi.org/10.3390/land7020071
47. Sirin A.A., Makarov D.A., Gummert I., Maslov A.A., Gul’be Ya.I. Depth of peat burning and carbon loss during an underground forest fire. Contemp. Probl. Ecol., 2020, no. 13, pp. 769–779. https://doi.org/10.1134/S1995425520070112
48. Sirin A.A., Medvedeva M.A., Makarov D.A., Maslov A.A., Joosten H. Multispectral satellite-based monitoring of land cover change and associated fire reduction after large-scale peatland rewetting following the 2010 peat fires in Moscow region (Russia). Ecol. Engin., 2020, vol. 158, p. 106044. https://doi.org/10.1016/j.ecoleng.2020.106044
49. Sirin A.A., Medvedeva M.A., Makarov D.A., Maslov A.A., Joosten H. Monitoring of vegetation cover of rewetted peatlands in Moscow oblast. Vestn. St. Peterb. Gos. Univ., Nauki o Zemle, 2020, vol. 65, no. 2, pp. 314–336. (In Russ.). https://doi.org/10.21638/spbu07.2020.206
50. Sirin A.A., Medvedeva M.A., Il’yasov D.V., Korotkov V.N., Minaeva T.Yu., Suvorov G.G. Rewetted peatlands in the climate reporting of the Russian Federation. Fundamental’naya i Prikladnaya Klimatologiya, 2021, vol. 7, no. 3, pp. 84–112. (In Russ.). https://doi.org/10.21513/2410-8758-2021-3-84-112
51. Sirin A., Maslov A., Makarov D., Gulbe Y., Joosten H. Assessing Wood and soil carbon losses from a forest-peat fire in the boreo-nemoral zone. Forests, 2021a, no. 12 (7), 880 p. https://doi.org/10.3390/f12070880
52. Sirin A., Medvedeva M., Korotkov V., Itkin V., Minayeva T., Ilyasov D., Suvorov G., Joosten H. Addressing peatland rewetting in Russian Federation climate reporting. Land, 2021b, no. 10, 1200 p. https://doi.org/10.3390/land10111200
53. Sirin A.A. Peatbogs and anthopogenically modified peatlands: carbon, greenhouse gases and climate change. Biol. Bull. Rev., 2022, no. 12 (Suppl. 2), pp. S123–S139. https://doi.org/10.1134/S2079086422080096
54. Sirin A., Medvedeva M. Remote sensing mapping of peatfire-burnt areas: identification among other wildfires. Remote Sens., 2022, no. 14, 194 p. https://doi.org/10.3390/rs14010194
55. Sirin A.A., Medvedeva M.A., Itkin V.Yu., Makarov D.A., Korotkov V.N. Peat fire detection to estimate greenhouse gas emissions. Meteorolog. i Gidrolog., 2022, no. 10, pp. 33–45. (In Russ.).
56. Sirin A.A., Suvorov G.G. Greenhouse gas emissions from peat extraction in the center of the European part of Russia. Russ. Meteorol. Hydrol., 2022, vol. 47, no. 3, pp. 207–216. https://doi.org/10.3103/S1068373922030062
57. Suvorov G.G., Chistotin M.V., Sirin A.A. Effect of vegetation and moisture conditions on the emission of methane from drained peat soil. Agrokhimiya, 2010, no. 12, pp. 37–45. (In Russ.).
58. Suvorov G.G., Chistotin M.V., Sirin A.A. The carbon losses from a drained peatland in Moscow oblast used for peat extraction and agriculture. Agrokhimiya, 2015, no. 11, pp. 51–62. (In Russ.).
59. Tanneberger F., Tegetmeyer C., Busse S., Barthelmes A., Shumka S., Mariné A.M., Jenderedjian K., Steiner G.M., Essl F., Etzold J., Mendes C., Kozulin A., Frankard P.,. Milanović D., Ganeva A., Apostolova I., Alegro A., Delipetrou P., Navrátilová J., Risager M., Leivits A., Fosaa A.M., Tuominen S., Muller F., Bakuradze T., Sommer M., Christanis K., Szurdoki E., Oskarsson H., Brink S.H., Connolly J., Bragazza L., Martinelli G., Aleksans O., Priede A., Sungaila D., Melovski L., Belous T., Saveljić D., de Vries F., Moen A., Dembek W., Mateus J., Hanganu J., Sirin A., Markina A., Napreenko M., Lazarević P., Šefferová-Stanová V., Skoberne P., Pérez P.H., Pontevedra-Pombal X., Lonnstad J., Küchler M., Wüst-Galley C., Kirca S., Mykytiuk O., Lindsay R., Joosten H. The peatland map of Europe. Mires Peat, 2017, no. 19, article 22, pp. 1–17. https://doi.org/10.19189/MaP.2016.OMB.264
60. Tanneberger F., Joosten H., Moen A., Lewis E., Miles L., Sirin A., Tegetmeyer C., Joosten H. Mires in Europe – regional diversity, condition and protection. Diversity, 2021, vol. 13, no. 8, 381 p. https://doi.org/10.3390/d13080381
61. Torfyanye bolota Rossii: k analizu otraslevoi informatsii [Peatlands of Russia: to the Analysis of Sectorial Information]. Sirin A.A., Minaeva T.Yu., Eds. Moscow: GEOS Publ., 2001. 190 p.
62. Tubiello F.N., Biancalani R., Salvatore M., Rossi S., Conchedda G. A worldwide assessment of greenhouse gas emissions from drained organic soils. Sustain., 2016, vol. 8, no. 4, no. 371, pp. 1–13. https://doi.org/10.3390/su8040371
63. Vomperskii S.E., Sirin A.A., Tsyganova O.P., Valyaeva N.A., Maikov D.A. Peatlands and paludified lands of Russia: attempt of analyses of spatial distribution and diversity. Izv. Akad. Nauk, Ser. Geogr., 2005, no. 5, pp. 39–50. (In Russ.).
64. Vomperskii S.E., Glukhova T.V., Smagina M.V., Kovalev A.G. The conditions and consequences of fires in pine forests on drained bogs. Lesoved., 2007, no. 6, pp. 35–44. (In Russ.).
65. Vozbrannaya A., Antipin V., Sirin A. After Wildfires and Rewetting: Results of 15+ Years’ Monitoring of Vegetation and Environmental Factors in Cutover Peatland. Diversity, 2023, no. 15, 3 p. https://doi.org/10.3390/d15010003
66. Water Code of the Russian Federation. The Federal Law no. 74 of June 03, 2006. Available at: http://pravo.gov.ru/proxy/ips/?docbody=&nd=102107048 (accessed: 30.04.2023). (In Russ.).
67. Wilson D., Blain D., Couwenberg J., Evans C.D., Murdiyarso D., Page S.E., Renou-Wilson F., Rieley J.O., Sirin A., Strack M., Tuittila E.-S. Greenhouse gas emission factors associated with rewetting of organic soils. Mires Peat, 2016, no. 17, pp. 1–28. https://doi.org/10.19189/MaP.2016.OMB.222
Review
For citations:
Sirin A.A., Medvedeva M.A., Itkin V.Yu. Rewetting of Disused Drained Peatlands and Reduction of Greenhouse Gas Emissions. Izvestiya Rossiiskoi Akademii Nauk. Seriya Geograficheskaya. 2023;87(4):597–618. (In Russ.) https://doi.org/10.31857/S258755662304012X. EDN: BFZXYJ