Role of Old-Growth Forests in Carbon Accumulation and Storage
https://doi.org/10.31857/S2587556623040064
EDN: SMCVVV
Abstract
The paper provides a brief analysis of well-known works containing evidence of carbon accumulation in oldgrowth forests. The analysis of the current state of the problem allows us to conclude that old-growth forests continue to accumulate carbon. A map of old-growth forests in Russia, identified on the basis of tree age higher than 200 years, using remote sensing data, is presented, and estimates of carbon pools in these forests are discussed. According to the estimates obtained, the area of old-growth forests in Russia was 163 mln ha as of 2021, and carbon stocks in phytomass reached 7.33 bln t, with the contribution of larch forests and larch woodlands of 86%. It is shown that the most important cause of uncertainties in the estimates of carbon cycles in old-growth forests is the uncertainty of the concept of “old-growth forests.” The mosaic structure of forests, that is, the high horizontal structural diversity, contributes to the accumulation of nitrogen and carbon in soils due to the creation of functioning conditions for various plant species, including light-loving ones, and, accordingly, due to the presence of litter of different quality, which is important for soil biota. Oldgrowth mosaic forests in Moskvoretsko-Oka Plain accumulated more nitrogen and carbon in soils than forests at an earlier stage of succession with a low mosaicity (in average 80 t/ha versus 60 t/ha in the 30-cm layer). The old-growth fir-beech dead-cover forests of the Northwestern Caucasus, whose tree stand is characterized by the highest productivity in Russia and Europe and high carbon reserves in the tree stand, are characterized by low carbon stock in soils compared to forests at an earlier stage of development (in average 58 t/ha versus 99 t/ha in 30-cm layer). This is due to the low quality of beech and fir litter and the absence of a pronounced window mosaic, which prevents the colonization of light-loving plant species, including with a high quality of litter. It is shown that, along with microorganisms, it is necessary to take into account such agents of decomposition, mineralization and humification as earthworms, which play a key role in carbon cycles. Carbon stock in the litter of northern taiga spruce forests is an order of magnitude higher than in coniferous-broadleaved forests; in the litter and in the mineral layer of 0–30 cm, the carbon reserves under the crowns of spruce trees for about 200 years turned out to be significantly higher than in the spaces between the crowns, exceeding 80 t/ha.
About the Authors
N. V. LukinaRussian Federation
Moscow
S. A. Bartalev
Russian Federation
Moscow
A. P. Geraskina
Russian Federation
Moscow
A. S. Plotnikova
Russian Federation
Moscow
A. V. Gornov
Russian Federation
Moscow
D. V. Ershov
Russian Federation
Moscow
E. A. Gavrilyuk
Russian Federation
Moscow
A. I. Kuznetsova
Russian Federation
Moscow
N. E. Shevchenko
Russian Federation
Moscow
E. V. Tikhonova
Russian Federation
Moscow
M. A. Danilova
Russian Federation
Moscow
D. N. Tebenkova
Russian Federation
Moscow
V. E. Smirnov
Russian Federation
Moscow
E. V. Ruchinskaya
Russian Federation
Moscow
References
1. Afterlife of a tree. Bobiec A., Ed. Warszawa-Hajnówka: WWF Poland, 2005. 251 p.
2. Akkumulyatsiya ugleroda v lesnykh pochvakh i suktsessionnyi status lesov [Carbon Accumulation in Forest Soils and Forest Succession Status]. Moscow: KMK Sci. Press Publ., 2018. 232 p.
3. Akulova L.I., Dolgin M.M., Kolesnikova A.A. Distribution and abundance of earthworms (Lumbricidae) in middle taiga of the Komi Republic. Vestn. Inst. Biol. Komi NTs UrO RAN, 2017, vol. 199, no. 1, pp. 4–16. (In Russ.).
4. Andriuzzi W.S., Schmidt O., Brussaard L., Faber J.H., Bolger T. Earthworm functional traits and interspecific interactions affect plant nitrogen acquisition and primary production. Appl. Soil Ecol., 2016, vol. 104, pp. 148–156.
5. Ashwood F., Vanguelova E.I., Benham S., Butt K.R. Developing a systematic sampling method for earthworms in and around deadwood. For. Ecosyst., 2019, vol. 6, no. 33, pp. 1–12.
6. Atlas malonarushennykh lesnykh territorii Rossii [Atlas of Intact Forest Territories of Russia]. Moscow: MSoES Publ.; Washington: World Resources Inst. Publ., 2003. 187 p.
7. Bartalev S.A. Methodology for the integrated use of satellite remote sensing data, selected ground observations and modeling for monitoring the forest carbon budget in Russia. In Sovremennye problemy distantsionnogo zondirovaniya Zemli iz kosmosa: materialy 20-i mezhd. konf. [Current Problems in Remote Sensing of the Earth from Space. Proc. of the 20th International Conference]. Moscow: Space Res. Inst. RAS, 2022, p. 499. (In Russ.). https://doi.org/10.21046/20DZZconf-2022a
8. Bartalev S.A., Egorov V.A., Zharko V.O., Lupyan E.A., Plotnikov D.E., Khvostikov S.A., Shabanov N.V. Sputnikovoe kartografirovanie rastitel’nogo pokrova Rossii [Land Cover Mapping over Russia Using Earth Observation Data]. Moscow: Space Res. Inst. RAS, 2016. 208 p.
9. Bioraznoobrazie i funktsionirovanie lesnykh ekosistem [Biodiversity and Functioning of Forest Ecosystems]. Moscow: KMK Sci. Press Publ., 2021. 327 p.
10. Bityutskii N.P., Solov’eva A.N., Lukina E.I., Oleinik A.S., Zavgorodnyaya Yu.A., Demin V.V., Byzov B.A. Stimulating effect of earthworm excreta on the mineralization of nitrogen compounds in soil. Eurasian Soil Sci., 2007, vol. 40, no. 4, pp. 426–431.
11. Bossuyt H., Six J., Hendrix P.F. Protection of soil carbon by microaggregates within earthworm casts. Soil Biol. Biochem., 2005, vol. 37, pp. 251–258.
12. Cavard X., Macdonald S.E., Bergeron Y., Chen H.Y. Importance of mixedwoods for biodiversity conservation: Evidence for understory plants, songbirds, soil fauna, and ectomycorrhizae in northern forests. Environ. Rev., 2011, vol. 19, pp. 142–161.
13. Dentener F., Drevet J., Lamarque J.F., Bey I., Eickhout B., Fiore A.M., Hauglustaine D., Horowitz L.W., Krol M., Kulshrestha U.C., Lawrence M., Galy-Lacaux C., Rast S., Shindell D., Stevenson D., van Noije T., Atherton C., Bell N., Bergman D., Butler T., Cofala J., Collins B., Doherty R., Ellingsen K., Galloway J., Gauss M., Montanaro V., Müller J.F., Pitari G., Rodriguez J., Sanderson M., Solmon F., Strahan S., Schultz M., Sudo K., Szopa S., Wild O. Nitrogen and sulfur deposition on regional and global scales: a multimodel evaluation. Glob. Biogeochem. Cycles, 2006, vol. 20, iss. 4, no. GB4003. https://doi.org/10.1029/2005GB002672
14. Desie E., van Meerbeek K., de Wandeler H., Bruelheide H., Domisch T., Jaroszewicz B., Joly F.-X., Vancampenhout K., Vesterdal L., Muys B. Positive feedback loop between earthworms, humus form and soil pH reinforces earthworm abundance in European forests. Funct. Ecol., 2020, vol. 34, iss. 12, pp. 2598–2610. https://doi.org/10.1111/1365-2435.13668
15. Dylis N.V. Structure of the Forest Biogeocoenosis. In Komarovskie chteniya, 21 [Komarovsky Readings, 21]. Moscow: Nauka Publ., 1969. 55 p. (In Russ.).
16. European Russian Forests. Their Current State and Features of Their History. Smirnova O.V., Bobrovsky M.V., Khanina L.G., Eds. Heidelberg: Springer Berlin, 2017. 556 p.
17. Evstigneev O.I., Gornova M.V. Microsites and maintenance of floristic diversity of tall-herb spruce forest (on the example of the Ryzhukha Swamp natural monument, Bryansk region). Russ. J. Ecosyst. Ecol., 2017, vol. 2, no. 2, pp. 1–21. (In Russ.). https://doi.org/10.21685/2500-0578-2017-2-2
18. FAO and UNEP. The State of the World’s Forests 2020. Forests, biodiversity and people. Rome, 2020. 188 p. https://doi.org/10.4060/ca8642en
19. Filser J., Faber J.H., Tiunov A.V., Brussaard L., Frouz J., de Deyn G., Uvarov A.V., Berg M.P., Lavelle P., Loreau M., Wall D.H., Querner P., Eijsackers H., Jiménez J.J. Soil fauna: key to new carbon models. Soil, 2016, vol. 2, no. 4, pp. 565–582. https://doi.org/10.5194/soil-2-565-2016
20. Fridland V.M. Problemy geografii, genezisa i klassifikatsii pochv [Problems of Geography, Genesis and Classification of Soils]. Moscow: Nauka Publ., 1986. 243 p.
21. Ganin G.N., Striganova B.R. Factors determining the origin and maintenance of redundant species diversity of the soil animal population (by a case study of the Far East) Biol. Bull., 2012, vol. 39, no. 3, pp. 288–301.
22. Garnier P., Makowski D., Hedde M., Bertrand M. Changes in soil carbon mineralization related to earthworm activity depend on the time since inoculation and their density in soil. Sci. Rep., 2022, vol. 12, no. 1, pp. 1–10.
23. Geraskina A.P. Dynamics of the complex of earthworms during of successions after-felling in the forests of the North-Western Caucasus. Vopr. Les. Nauki, 2018, vol. 1, no. 1, pp. 1–14. (In Russ.). https://doi.org/10.31509/2658-607x-2018-1-1-1-14
24. Geraskina A.P. Earthworms (Oligochaeta, Lumbricidae) near the township Dombay of Teberda reserve (Northwest Caucasus, Karachay-Cherkessia). Tr. Zoolog. Inst. RAN, 2016, vol. 320, no. 4, pp. 450–466. (In Russ.).
25. Geraskina A.P. Impact of earthworms of different morphoecological groups on carbon accumulation in forestsoils. Vopr. Les. Nauki, 2020, vol. 3, no. 2, pp. 1–20. (In Russ.).
26. Geraskina A.P., Antoshchenkov V.F. The role of microsites in the maintenance of earthworm functional diversity. In Problemy pochvennoi zoologii [Challenges of Soil Zoology]. Moscow: KMK Sci. Press Publ., 2018, 59 p. (In Russ.).
27. Gornov A.V., Gornova M.V., Tikhonova E.V., Shevchenko N.E., Kuznetsova A.I., Ruchinskaya E.V., Teben’kova D.N. Population-based assessment of succession stage of mixed forests in European part of Russia. Lesoved., 2018, no. 4, pp. 243–257. (In Russ.). https://doi.org/10.1134/S0024114818040083
28. Gundersen P., Thybring E.E., Nord-Larsen T., Vesterdal L., Nadelhoffer K.J., Johannsen V.K. Old-growth forest carbon sinks overestimated. Nature, 2021, vol. 591, no. E21–E23. https://doi.org/10.1038/s41586-021-03266-z
29. Jenny H. Role of the plant factor in the pedogenic functions. Ecol., 1958, vol. 39, no. 1, pp. 5–16.
30. Kaidun P.I. The influence of earthworms on the availability of mineral nutrients to plants: nitrogen, iron, zinc, manganese and silicon. Cand. Sci. (Biol.) Dissertation. St. Petersb., 2018. 153 p. (In Russ.)
31. Karpachevskii L.O. Pestrota pochvennogo pokrova v lesnom biogeotsenoze [Heterogeneity of the Ground Cover in the Forest Biogeocenoses]. Moscow: MSU Publ., 1977. 312 p.
32. Khanina L., Bobrovsky M. Value of large Quercus robur fallen logs in enhancing the species diversity of vascular plants in an old-growth mesic broad-leaved forest in the Central Russian Upland. For. Ecol. Manage., 2021, vol. 491, pp. 119172. https://doi.org/10.1016/j.foreco.2021.119172
33. Kooch Y., Haghverdi K. Earthworms – good indicators for forest disturbance. J. BioSci. Biotechnol., 2014, vol. 3, no. 2, pp. 155–162.
34. Kozlovskaya L.S. Rol’ pochvennykh bespozvonochnykh v transformatsii organicheskogo veshchestva bolotnykh pochv [The Role of Invertebrates in the Transformation of Organic Matter of Bog Soils]. Leningr.: Nauka Publ., 1976. 211 p.
35. Kuznetsova A.I., Geraskina A.P., Lukina N.V., et al. Linking Vegetation, Soil Carbon Stocks, and Earthworms in Upland Coniferous–Broadleaf Forests. Forests, 2021, vol. 12, iss. 9, no. 1179.
36. Larch wood – a literature review. Bergstedt A., Lyck C., Eds. Copenhagen: Forest & Landscape Denmark, 2007. 115 p.
37. Lavelle P. Faunal activities and soil processes: adaptive strategies that determine ecosystem function. Adv. Ecol. Res., 1997, vol. 27, pp. 93–132.
38. Lavelle P., Martin A. Small-scale and large-scale effects of endogeic earthworms on soil organic matter dynamics in soils of the humid tropics. Soil Biol. Biochem., 1992, vol. 24, no. 12, pp. 1491–1498.
39. Lee K.E. Earthworms: Their ecology and relationships with soils and land use. Sydney: Academic Press, 1985. 411 p.
40. Lee S.Y., Foster R.C. Soil fauna and soil structure. Aust. J. Soil Res., 1991, vol. 29, pp. 745–775.
41. Lemtiri A., Colinet G., Alabi T., Cluzeau D., Zirbes L., Haubruge E., Francis F. Impacts of earthworms on soil components and dynamics. A review. Biotechnol. Agron. Soc. Environ., 2014, vol. 18, pp. 1–13.
42. Lukina N.V., Geras’kina A.P., Gornov A.V., Shevchenko N.E., Kuprin A.V., Chernov T.I., Chumachenko S.I., Shanin V.N., Kuznetsova A.I., Teben’kova D.N., Gornova M.V. Biodiversity and climate regulating functions of forests: current issues and prospects for research. Vopr. Les. Nauki, 2020, vol. 3, no. 4, pp. 1–90. (In Russ.). https://doi.org/10.31509/2658-607x-2020-3-4-1-90
43. Luyssaert S., Schulze E.-D., Knohl A., Law B.E., Ciais P., Grace J. Reply to: Old-growth forest carbon sinks overestimated. Nature, 2021, vol. 591, no. E24–E25. https://doi.org/10.1038/s41586-021-03267-y
44. Luyssaert S., Schulze E.-D., Börner A., Knohl A., Hessenmöller D., Law B.E., Ciais P., Grace J. Old-growth forests as global carbon sinks. Nature, 2008, vol. 455, pp. 213–215. https://doi.org/10.1038/nature07276
45. Makeschin F. Earthworms (Lumbricidae: Oligochaeta): Important promoters of soil development and soil fertility. In Fauna in soil ecosystems. Recycling processes, nutrient fluxes and agricultural production. Benckiser G., Ed. Florida: CRC Press, 1997, pp. 173–223.
46. McDaniel J.P., Stromberger M.E., Barbarick K.A., Cranshaw W. Survival of Aporrectodea caliginosa and its effects on nutrient availability in biosolids amended soil. Appl. Soil Ecol., 2013, vol. 71, pp. 1–6.
47. Metodicheskie podkhody k ekologicheskoi otsenke lesnogo pokrova v basseine maloi reki [Methodological Approaches to Environmental Assessment of the Forest Cover in the Basin of the Small Rivers]. Zaugol’nova L.B., Braslavskaya T.Yu., Eds. Moscow: KMK Sci. Press Publ., 2010. 383 p.
48. Odum E.P. The Strategy of Ecosystem Development: An understanding of ecological succession provides a basis for resolving man’s conflict with nature. Science, 1969, vol. 164, pp. 262–270. http://doi.org/10.1126/science.164.3877.262
49. Old-Growth Forests: A Literature Review of the Characteristics of Eastern North American Forests. Vermont: Vermont Natural Resources Council, 2005. 20 p.
50. Onipchenko V.G. Funktsional’naya fitotsenologiya: Sinekologiya rastenii [Functional Phytosociology: Plants Synecology]. Moscow: KRASAND Publ., 2014. 576 p.
51. Orlova M.A. Elementary unit of the forest biogeocenotic cover for investigation of forest ecosystem functions. Tr. Karel’. NTs. Ser. Ekolog. Issled., 2013, no. 6, pp. 126– 132. (In Russ.).
52. Orlova M.A., Lukina N.V., Smirnov V.E. Methodology of forest litter sampling taking into account the patchiness of forest biogeocoenoses. Lesoved., 2015, no. 3, pp. 214–221. (In Russ.).
53. Perel’ T.S. Rasprostranenie i zakonomernosti raspredeleniya dozhdevykh chervei fauny SSSR [Distribution and Distribution Regularities of Earthworms in the USSR Fauna]. Moscow: Nauka Publ., 1979. 272 p.
54. Potapov P., Yaroshenko A., Turubanova S., Dubinin M., Laestadius L., Thies C., Aksenov D., Egorov A., Yesipova Y., Glushkov I., Karpachevskiy M., Kostikova A., Manisha A., Tsybikova E., Zhuravleva I. Mapping the world’s intact forest landscapes by remote sensing. Ecol. Soc., 2008, vol. 13, iss. 2, no. 51. https://doi.org/10.5751/ES-02670-130251
55. Ramenskii L.G. Vvedenie v kompleksnoe pochvenno-geobotanicheskoe issledovanie zemel’ [Introduction to a Comprehensive Soil-Geobotanical Study of Land]. Moscow-Lening. Sel’khozgiz Publ., 1938. 620 p.
56. Raznoobrazie i dinamika lesnykh ekosistem Rossii. Tom 1 [Forest Ecosystems of Russia: Diversity and Dynamics. Volume 1]. Isaev A.S., Ed. Moscow: KMK Sci. Press Publ., 2012. 461 p.
57. Raznoobrazie i dinamika lesnykh ekosistem Rossii. Tom 2 [Forest Ecosystems of Russia: Diversity and Dynamics. Volume 2]. Isaev A.S., Ed. Moscow: KMK Sci. Press Publ., 2013. 478 p.
58. Roturier S., Roue M. Of forest, snow and lichen: Sámi reindeer herders’ knowledge of winter pastures in northern Sweden. For. Ecol. Manage., 2009, vol. 258, pp. 1960–1967.
59. Rozen A., Mysłajek R.W., Sobczyk L. Altitude versus vegetation as the factors influencing the diversity and abundance of earthworms and other soil macrofauna in montane habitat (Silesian Beskid Mts, Western Carpatians). Pol. J. Ecol., 2013, vol. 61, no. 1, pp. 145–156.
60. Sabatini F.M., Bluhm H., Kun Z., Aksenov D., Atauri J.A., Buchwald E., Burrascano S., Cateau E., Diku A., Marques Duarte I., Fernández López Á.B., Garbarino M., Grigoriadis N., Horváth F., Keren S., Kitenberga M., Kiš A., Kraut A., Ibisch P.L., Larrieu L., Lombardi F., Matovic B., Nicolae Melu R., Meyer P., Midteng R., Mikac S., Mikoláš M., Mozgeris G., Panayotov M., Pisek R., Nunes L., Ruete A., Schickhofer M., Simovski B., Stillhard J., Stojanovic D., Szwagrzyk J., Tikkanen O.-P., Toromani E., Volosyanchuk R., Vrška T., Waldherr M., Yermokhin M., Zlatanov T., Zagidullina A., Kuemmerle T. European primary forest database v2.0. Sci. Data, 2021, vol. 8, no. 220. https://doi.org/10.1038/s41597-021-00988-7
61. Schmidt M.W., Torn M.S., Abiven S., Dittmar T., Guggenberger G., Janssens I.A., Kleber M., Kögel-Knabner I., Lehmann J., Manning D.A.C., Nannipieri P., Rasse D.P., Weiner S., Trumbore S.E. Persistence of soil organic matter as an ecosystem property. Nature, 2011, vol. 478, pp. 49–56.
62. Schulze E.-D., Wirth C., Mollicone D., von Lüpke N., Ziegler W., Achard F., Mund M., Prokushkin A., Scherbina S. Factors promoting larch dominance in central Siberia: fire versus growth performance and implications for carbon dynamics at the boundary of evergreen and deciduous conifers. Biogeosci., 2012, vol. 9, pp. 1405–1421. https://doi.org/10.5194/bg-9-1405-2012
63. Shevchenko N.E. The role of Bison bonasus (Linnaeus, 1758) in the mosaic formation of natural forest cover in Eastern Europe. First article. The dynamics of the area, and features of the food and topical activity of the European bison in the late Holocene in Eastern Europe. Russ. J. Ecosyst. Ecol., 2016, vol. 1, no. 2, pp. 1–41. (In Russ.). https://doi.org/10.21685/2500-0578-2016-2-3
64. Shevchenko N.E., Kuznetsova A.I., Teben’kova D.N., Smirnov V.E., Geras’kina A.P., Gornov A.V., Grabenko E.A., Tikhonova E.V., Lukina N.V. Succession dynamics of vegetation and storages of soil carbon in mixed forests of Northwestern Caucasus. Lesoved., 2019, no. 3, pp. 163–176. (In Russ.). https://doi.org/10.1134/S0024114819030082
65. Shevchenko N., Geraskina A., Kuprin A., Grabenko E. The role of canopy gaps in maintaining biodiversity of plants and soil macrofauna in the forests of the northwestern Caucasus. Ecol. Quest., 2021, vol. 32, no. 2, pp. 93–110. https://doi.org/10.12775/EQ.2021.017
66. Shvidenko A.Z., Shchepashchenko D.G., Nil’sson S., Bului Yu.I. Tablitsy i modeli khoda rosta i produktivnosti nasazhdenii osnovnykh lesoobrazuyushchikh porod Severnoi Evrazii (normativno-spravochnye materialy) [Tables and Models of Growth and Productivity of Forests of Major Forest Forming Species of Northern Eurasia (Standard and Reference Materials)]. Moscow: Fed. Forest. Agency, 2008. 886 p.
67. Smirnova O.V., Bobrovskii M.V., Khanina L.G., Smirnov V.E. Succession status of old-growth spruce and spruce-fir forests in European Russia. Uspekhi Sovrem. Biol., 2006, vol. 126, no. 1, pp. 27–49. (In Russ.).
68. Smirnova O.V., Korotkov V.N. Oldgrowth forests of NorthWest Karelia Pjaozero forest management unit. Botanich. Zh., 2001, vol. 86, no. 1, pp. 98–109. (In Russ.).
69. Smirnova O.V., Popadyuk R.V., Evstigneev O.I., Minaeva T.Yu, Shaposhnikov E.S., Morozov A.S., Yanitskaya T.O., Kuznetsova T.V., Ripa S.I., Samokhina T.Yu., Romanovskii A.M., Komarov A.S. Current state of coniferous-broad-leaved forests in Russia and Ukraine: historical development, biodiversity, dynamic. Pushchino: PRC RAS Preprint, 1995. 76 p.
70. Smirnova O.V., Shevchenko N.E., Khanina L.G., Bobrovskii M.V. Refugium of Boreal Forests of the Circumpolar Urals. Izv. Akad. Nauk. Ser. Biol., 2018, no. 2, pp. 237–244. (In Russ.). https://doi.org/10.7868/S0002332918020133
71. Striganova B.R. Investigation of the role of woodlice and earthworms in the processes of humification of decomposing wood. Pochvoved., 1968, no. 8, pp. 85–90. (In Russ.).
72. Suktsessionnye protsessy v zapovednikakh Rossii i problemy sokhraneniya biologicheskogo raznoobraziya [Succession Processes in Russian Nature Reserves and Problems of Biological Diversity Conservation]. Smirnova O.V., Shaposhnikova E.S., Eds. St. Petersb.: Rus. Botan. Soc., 1999. 549 p.
73. The Mosaic-Cycle Concept of Ecosystems. Ecological Studies, Remmert H., Ed. Heidelberg: Springer, 1991, vol. 85. 168 p.
74. Vostochnoevropeiskie lesa: istoriya v golotsene i sovremennost’. Tom 1 [Eastern European Forest in the Holocene and Modern History. Volume 1.]. Smirnova O.V., Ed. Moscow: Nauka Publ., 2004а. 479 p.
75. Vostochnoevropeiskie lesa: istoriya v golotsene i sovremennost’. Tom 2 [Eastern European Forest in the Holocene and Modern History. Volume 2]. Smirnova O.V., Ed. Moscow: Nauka Publ., 2004b. 575 p.
76. Vsevolodova-Perel’ T.S. Dozhdevye chervi fauny Rossii. Kadastr i opredelitel’ [Earthworms of Russia. Cadastr and Key-book]. Moscow: Nauka Publ., 1997. 101 p.
77. Wirth C., Messier C., Bergeron Y., Frank D., Kahl A. OldGrowth Forest Definitions: a Pragmatic View. In OldGrowth Forests. Ecological Studies, vol. 207, Heidelberg: Springer Berlin, 2009, pp. 11–33. https://doi.org/10.1007/978-3-540-92706-8_2
78. Yang Y., Luo Y., Finzi A.C. Carbon and nitrogen dynamics during forest stand development: a global synthesis. New Phytol., 2011, vol. 190, iss. 4, pp. 977–989. https://doi.org/10.1111/j.1469-8137.2011.03645.x
79. Zhang W., Hendrix P.F., Dame L.E., Burke R.A., Wu J., Neher D.A., Li J., Shao Y., Fu Sh. Earthworms facilitate carbon sequestration through unequal amplification of carbon stabilization compared with mineralization. Nat. Commun., 2013, vol. 4, no. 1, pp. 1–9.
80. Zhou G., Liu S., Li Z., Zhang D., Tang X., Zhou C., Yan J., Mo J. Old-growth forests can accumulate carbon in soils. Science, 2006, vol. 314, iss. 5804, no. 1417. https://doi.org/10.1126/science.1130168
81. Zhukov A.V. The soil zoological diagnostics on the basis of the trophic structure analysis of soil mesofauna in steppe Pridneprovsky region. Vіsn. Dnіpropetr. Unіv. Bіol. Ekol., 2000, no. 7, pp. 73–79. (In Russ.).
82. Zhuravleva I.V., Komarova A.V., Potapov P.V., Turubanova S.A., Yaroshenko A.Yu. Mildly-damaged forest areas in boreal forests of the world. The origin, development, importance and probable future of the concept of mildly-damaged forest areas with regard to boreal forests. Russ. J. Ecosyst. Ecol., 2016, vol. 1, no. 1. pp. 1–11. (In Russ.). https://doi.org/10.21685/2500-0578-2016-1-5
Review
For citations:
Lukina N.V., Bartalev S.A., Geraskina A.P., Plotnikova A.S., Gornov A.V., Ershov D.V., Gavrilyuk E.A., Kuznetsova A.I., Shevchenko N.E., Tikhonova E.V., Danilova M.A., Tebenkova D.N., Smirnov V.E., Ruchinskaya E.V. Role of Old-Growth Forests in Carbon Accumulation and Storage. Izvestiya Rossiiskoi Akademii Nauk. Seriya Geograficheskaya. 2023;87(4):536–557. (In Russ.) https://doi.org/10.31857/S2587556623040064. EDN: SMCVVV