Assessment of the Carbon Content in Agricultural Soils of the European Russia for Climate Projects
https://doi.org/10.31857/S2587556623040143
EDN: TINGKW
Abstract
Soils and their organic carbon (SOC) are recognized as the main regulators of the global carbon cycle. At the same time, the calculations of SOC stock are not considered for climate projects and remain unclaimed. The aim of the study is to demonstrate the perspective of SOC stock analysis for planning and decision-making within the framework of Land Use, Land-Use Change and Forestry Programs. The study exploits modern available digital soil databases processed by QGIS tools. Using the example of agricultural soils in European Russia, it has been shown that SOC reserves in the 0.3 m layer of the base year 1990 were 7.0 Gt C in arable and 3.1 Gt C in pasture lands. It was found that during the period of agricultural use, the stock of SOC decreased by 1.8 Gt C (21% of the original content) on arable land and 0.3 Gt C (9% of the original content) on pastures. The loss of SOC stock from 0.3 m layer amounted to about 2.1 Gt C (some 7.7 Gt CO2-eq.). The decline of SOС stock from the 0.3–1.0 m layer of arable and pasture lands amounted to about 1.4 Gt C or 5.2 Gt CO2-eq., which reaches almost 70% of the loss of the surface 0.3 m layer. The total loss of SOC stock from agricultural soils from a 1.0 m layer is about 12.9 Gt CO2-eq., which is almost 9 times higher than the total greenhouse gas emission of the Russian Federation in 2020. It is proposed to include deeper layers of agricultural soils in the national standard for emissions and removals of greenhouse gas accounting. An approach is shown to use the spatial distribution of SOC stock for preliminary planning of climate projects within the framework of Land Use, Land-Use Change and Forestry Programs. For the practical establishment of greenhouse gas absorption projects, detailed justifications are required. The performed studies are harmonized with the requirements of the Intergovernmental Panel on Climate Change, which confirms the potential of soils use in climate projects of the Russian Federation.
Keywords
About the Authors
V. S. StolbovoyRussian Federation
Moscow
P. P. Fil
Russian Federation
Moscow
References
1. Baldock J.A., Skjemstad J.O. The role of soil matrix and minerals in the protection of natural organic materials from biological effects. Org. Geochem., 2000, vol. 31, iss. 7–8, pp. 697–710. https://doi.org/10.1016/S0146-6380(00)00049-8
2. Batjes N.H. Total carbon and nitrogen in the soils of the world. Eur. J. Soil Sci., 1996, vol. 47, no. 2, pp. 151–163. https://doi.org/10.1111/j.1365-2389.1996.tb01386.x
3. Bolin B. et al. The Global Carbon Cycle: SCOPE 13. New York: John Wiley & Sons, 1979.
4. Doklad o sostoyanii i ispol’zovanii zemel’ sel’skokhozyaistvennogo naznacheniya Rossiiskoi Federatsii v 2020 godu [Report on the State and Use of Agricultural Lands of the Russian Federation in 2020]. Moscow: FSBI “Rosinformagrotekh”, 2022. 384 p.
5. Dokuchaev V.V. The doctrine of nature zones and soil classification. Sobr. Soch., 1951, vol. 6, pp. 375–535. (In Russ.).
6. Edinyi gosudarstvennyi reestr pochvennykh resursov Rossii. Versiya 1.0 [Unified State Register of Soil Resources of Russia. Version 1.0]. Ivanov A.L., Shoba S.A., Eds. Moscow: V.V. Dokuchaev Soil Sci. Inst., 2014. 768 p.
7. Edinaya federal’naya informatsionnaya sistema o zemlyakh sel’skokhozyaistvennogo naznacheniya i zemlyakh, ispol’zuemykh ili predostavlennykh dlya vedeniya sel’skogo khozyaistva v sostave zemel’ inykh kategorii. Rukovodstvo pol’zovatelya [Unified Federal Information System on Agricultural Lands and Lands Used or Provided for Agriculture as Part of Lands of Other Categories. User’s Guide]. 2020. 117 p.
8. Glazovskaya M.A. The role and functions of the pedosphere in geochemical carbon cycles. Pochvoved., 1996, no. 2, pp. 174–186. (In Russ.).
9. Hiederer R., Jones R.J.A. Development of a Spatial European Soil Property Data Set. Luxembourg: Office for Official Publications of the European Communities, 2009. 30 p.
10. IPCC, 2000. Intergovernmental Panel on Climate Change (IPCC) (2000). A guide to good practice and uncertainty management in National Greenhouse Gas Inventories. Penman J., Kruger D., Galbally I., Hiraishi T., Nienzi B., Emmanuel S., Buendia L., Hoppaus R., Martinsen T., Meyer J., Miwa K., Tanabe K., Eds.). Hayama, 2000.
11. IPCC, 2000. Land Use, Land Use Change, and Forestry. IPCC Special Report. Watson R.T., Noble I.R., Bolin B., Ravindranath N.H., Verardo D.J., Dokken D.J., Eds. Cambridge: CUP, 2000. 375 p.
12. IPCC, 2003. The Intergovernmental Panel on Climate Change’s Guide to Good Practices in Land Use, Land-use Change and Forestry, the IPCC National Greenhouse Gas Inventory Program of UNEP. Penman J., Guitarsky M., Hiraishi T. et. al., Eds. Hayama: Inst. Glob. Envir. Strateg., 2003.
13. IPCC 2006. IPCC Guidelines for National Greenhouse Gas Inventories, Prepared by the National Greenhouse Gas Inventories Programme. Eggleston H.S., Buendia L., Miwa K., Ngara T., Tanabe K., Eds. Hayama: Inst. Glob. Envir. Strateg., 2006.
14. IPCC, 2021. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Annex VII: Glossary. Matthews J.B.R., Möller V., van Diemen R., Fuglestvedt J.S., Masson-Delmotte V., Méndez C., Semenov S., Reisinger A., Eds. Cambridge; New York: CUP, 2021. https://doi.org/10.1017/9781009157896.022
15. Ivanov A.L., Stolbovoi V.S. The Initiative “4 per mile” – a new global challenge for the soils of Russia. Byull. Pochv. Inst. Dokuchaeva, 2019, no. 98, pp. 185–202. (In Russ.). https://doi.org/10.19047/0136-1694-2019-98-185-202
16. Kogut B.M., Semenov V.M. Assessment of soil saturation with organic carbon. Byull. Pochv. Inst. Dokuchaeva, 2020, no. 102, pp. 103–124. (In Russ.).
17. Krylatov A.K., Nosov S.I., Yuditskii B.A., Bondarev B.E., Pervushina V.N. Dinamika balansa gumusa na pakhotnykh zemlyakh Rossiiskoi Federatsii [Dynamics of Humus Balance on Arable Lands of the Russian Federation]. Moscow: Agroprogress Publ., 1998. 60 p.
18. Krylatov A.K., Rodin A.Z., Nosov S.I. Fiziko-khimicheskie svoistva pochv sel’skokhozyaistvennykh ugodii i balans gumusa v pashne Rossiiskoi Federatsii [Physical and Chemical Properties of Agricultural Soils and Humus Balance in Arable Lands of the Russian Federation]. Moscow: Russlit Publ., 1996. 392 p.
19. Lal R. Managing soils for negative feedback to climate change and positive impact on food and nutritional security. Soil Sci. Plant Nutr., 2020, vol. 66, iss. 1, pp. 1–9. https://doi.org/10.1080/00380768.2020.1718548
20. Lehmann J., Kleber M. The contentious nature of soil organic matter. Nature, 2015, vol. 528, no. 7580, pp. 60– 68. https://doi.org/10.1038/nature16069
21. Minasny B., Malone B.P., McBratney A.B., Angers D.A., Arrouays D., Chambers A., Chaplot V., Chen Z.-S., Cheng K., Das B.S., Field D.J., Gimona A., Hedley C.B., Hong S.Y., Mandal B., Marchant B.P., Martin M., McConkey B.G., Mulder V.L., O’Rourke Sh., Richerde-Forges A.C., Odeh I., Padarian J., Paustian K., Pan G., Poggio L., Savin I., Stolbovoy V., Stockmann U., Sulaeman Y., Tsui Ch.-Ch., Vagen T.-G., van Wesemael B., Winowiecki L. Soil carbon 4 per mille. Geoderma, 2017, vol. 292, pp. 59–86. https://doi.org/10.1016/j.geoderma.2017.01.002
22. Natsional’nyi doklad “Global’nyi klimat i pochvennyi pokrov Rossii: otsenka riskov i ekologo-ekonomicheskikh posledstvii degradatsii zemel’, adaptivnye sistemy i tekhnologii ratsional’nogo prirodopol’zovaniya (sel’skoe i lesnoe khozyaistvo)” [National Report “Global Climate and Soil Cover of Russia: Assessment of Risks and Ecological and Economic Consequences of Land Degradation, Adaptive Systems and Technologies of Rational Nature Management (Agriculture and Forestry)”]. Bedritsky A.I., Ed. Moscow: GEOS Publ., 2018. 286 p.
23. Natsional’nyi doklad o kadastre antropogennykh vybrosov iz istochnikov i absorbtsii poglotitelyami parnikovykh gazov, ne reguliruemykh Monreal’skim protokolom, za 1990–2020 gg. Tom 1 [National Report on the Inventory of Anthropogenic Emissions by Sources and Removals by Sinks of Greenhouse Gases not Controlled by the Montreal Protocol for 1990–2020. Vol. 1]. Moscow: Rosgidromet Publ., 2022. 468 p.
24. Orlov D.S., Biryukova O.N., Sukhanova N.I. Organicheskoe veshchestvo v pochvakh Rossii [Organic Matter in the Soils of Russia]. Moscow: Nauka Publ., 1996. 256 p.
25. Orlov D.S. Gumusovye kisloty pochv i obshchaya teoriya gumifikatsii [Humic Acids of Soils and the General Theory of Humification]. Moscow: MSU Publ., 1990. 325 p.
26. Paustian K., Larson E., Kent J., Marx E., Swan A. Soil C Sequestration as a Biological Negative Emission Strategy. Front. Clim., 2019. pp. 1–8. https://doi.org/10.3389/fclim.2019.00008
27. Poulton P., Johnston J., Macdonald A., White R., Powlson D. Major limitations to achieving “4 per 1000” increases in soil organic carbon stock in temperate regions: Evidence from long-term experiments at Rothamsted Research, United Kingdom. Glob. Change Biol., 2018, vol. 24, no. 6, pp. 2563–2584. https://doi.org/10.1111/gcb.14066
28. Schmid M.W.I., Torn M.S., Abiven S., Dittmar T., Guggenberger G., Janssens I.A., Manning D.A.C., Nannipieri P., Rasse D.P., Weiner S., Trumbore S.E. Persistence of soil organic matter as an ecosystem property. Nature, 2011, vol. 478, pp. 49–56. https://doi.org/10.1038/nature10386
29. Six J., Frey S.D., Thiet R.K., Batten K.M. Bacterial and Fungal Contributions to Carbon Sequestration in Agroecosystems. Soil Sci. Soc. Am. J., 2006, vol. 70, pp. 555–569. https://doi.org/10.2136/sssaj2004.0347
30. Six J., Conant R.T., Paul E.A., Paustian K. Stabilization mechanisms of soil organic matter: implications for Csaturation of soils. Plant Soil, 2002, vol. 241, pp. 155– 176. https://doi.org/10.1023/A:1016125726789
31. Stevenson F.J. Humus chemistry: genesis, composition, reactions. Hoboken: John Wiley & Sons, 1995. 512 p.
32. Stewart C.E., Paustian K., Conant R.T., Plante A.F., Six J. Soil carbon saturation: concept, evidence and evaluation. Biogeochemistry, 2007, vol. 86, pp. 19–31.
33. Stolbovoi V. Carbon in Russian soils. Clim. Change, 2002, vol. 55, iss. 1–2, pp. 131–156.
34. Stolbovoi V.S., Grebennikov A.M., Ogleznev A.K., Ivanov A.L., Il’in L.I., Kolesnikova L.G., Petrosyan R.D., Shilov P.M., Fil’ P.P., Korchagin A.A. Reestr indikatorov kachestva pochv sel’skokhozyaistvennykh ugodii Rossiiskoi Federatsii. Versiya 1.0 [Register of Indicators of Soil Quality of Agricultural Lands of the Russian Federation. Version 1.0]. Kozlov D.N., Sapozhnikov P.M., Eds. Moscow; Suzdal’: Verkhnevolzh. Fed. Agrar. Nauch. Tsentr, 2021a. 260 p.
35. Stolbovoi V.S., Grebennikov A.M., Ogleznev A.K., Shilov P.M., Fil’ P.P. Svidetel’stvo o gosudarstvennoi registratsii bazy dannykh № 2021621903 v “Informatsionnospravochnoi baze dannykh indikatorov kachestva pochv sel’skokhozyaistvennykh ugodii RF” [Certificate of State Registration of the Database no. 2021621903 in “Information and Reference Database of Indicators of Soil Quality of Agricultural Lands of the Russian Federation”]. 2021b.
36. Stolbovoy V. Carbon in agricultural soils of Russia. In Soil Organic Carbon and Agriculture: Developing Indicators for Policy Analyses. Proceedings of an OECD expert meeting, Ottawa Canada. Smith C.A.S., Ed. Ottawa: Agricult. Agri-Food; Paris: OECD, 2002, pp. 301–306.
37. Stolbovoy V., Ivanov A. Carbon Balance in Soils of Northern Eurasia. In Soil Carbon. Progress in Soil Science. Hartemink A.E., McSweeney K., Eds. Cham: Springer, 2014, pp. 381–391. https://doi.org/10.1007/978-3-319-04084-4_38
38. Technical specifications and country guidelines for Global Soil Organic Carbon Sequestration Potential Map (GSOCseq). Rome: FAO, 2020. 34 p.
39. Tyurin I.V. Organicheskoe veshchestvo pochv i ego rol’ v pochvoobrazovanii i plodorodii [Organic Matter of Soils and Its Role in Soil Formation and Fertility]. Leningr.: Selkhozgiz, 1937. 287 p.
40. Vernadskii V.I. Zhivoe veshchestvo i biosfera [Living Matter and the Biosphere]. Yanshin A.L., Ed. Moscow: Nauka Publ., 1994. 669 p.
41. Zimov S.A., Schuur E.G., Chapin F.S. Permafrost and the global carbon budget. Science, 2006, vol. 312, iss. 5780, pp. 1612–1613. https://doi.org/10.1126/science.1128908
Review
For citations:
Stolbovoy V.S., Fil P.P. Assessment of the Carbon Content in Agricultural Soils of the European Russia for Climate Projects. Izvestiya Rossiiskoi Akademii Nauk. Seriya Geograficheskaya. 2023;87(4):568–583. (In Russ.) https://doi.org/10.31857/S2587556623040143. EDN: TINGKW