Forecasting the Carbon Stock Dynamics in the Soils of Cultivated Croplands in European Russia in the Context of the Low-Carbon Development
https://doi.org/10.31857/S2587556623040106
EDN: ZPYPTE
Abstract
Soil organic carbon sequestration potential in the cropland top soil layer (0–30 cm) of European Russia was assessed based on soil-ecological zoning using one of the most common global models of soil organic matter the Rothamsted dynamic carbon model (RothC) and open-access global databases such as Climatic Research Unit (CRU) TS v4.05, 1901−2020, SoilGrids250m 2.0 and time-series MODIS (MOD13A1.006 Terra Vegetation Indices) NDVI and EVI. Data from the national Soil Organic Carbon Map at 0–30 cm depth were used to estimate the current carbon stocks. FAO unified technical specifications and guidance for the generation of national Soil Carbon Sequestration Map was used as the current study mapping approach. The average rate of carbon sequestration by natural zones under the business-as-usual scenario ranged from 0.076 to −0.002 t/ha per year, decreasing from northern taiga zone to semidesert. A 5% increase in carbon input due to carbon-conservation technologies adoption can result in a twofold increase in carbon capture, and a 20% increase in carbon capture can result in a fivefold increase. A two-fold increase in the rate of C sequestration from the southern taiga with a maximum in the broad-leaved forests zone, followed by 1.5 times decrease or more in the steppe and dry-steppe zone was found with increasing carbon input to the soil. The FAO methodology determines, with a spatial resolution of 1 km, contour lines that have the highest and lowest potential for carbon stock changes when adopting sustainable soil management.
Keywords
About the Authors
V. A. RomanenkoRussian Federation
Moscow
Yu. L. Meshalkina
Russian Federation
Moscow
A. Yu. Gorbacheva
Russian Federation
Moscow
V. A. Dobrovolskay
Russian Federation
Moscow
A. N. Krenke
Russian Federation
Moscow
References
1. Alcamo J., Dronin N., Endejan M., Golubev G., Kirilenko A. A new assessment of climate change impacts on food production shortfalls and water availability in Russia. Glob. Environ. Change, 2007, vol. 17, pp. 429–444. https://doi.org/10.1016/j.gloenvcha.2006.12.006
2. Amelung W., Bossio D., de Vries W., Kögel-Knabner I., Lehmann J., Amundson R., Bol R., Collins C., Lal R., Leifeld J., Minasny B., Pan G., Paustian K., Rumpel C., Sanderman J., van Groenigen J.W., Mooney S., van Wesemael B., Wander M., Chabbi A. Towards a global-scale soil climate mitigation strategy. Nat. Commun., 2020, vol. 11, no. 5427, pp. 1–10. https://doi.org/10.1038/s41467-020-18887-7
3. Chernova O.V., Golozubov O.M., Alyabina I.O., Schepaschenko D.G. Integrated approach to spatial assessment of soil organic carbon in the Russian Federation. Pochvoved., 2021, no. 3, pp. 273–286. (In Russ.). https://doi.org/10.1134/S1064229321030042
4. Chernova O.V., Ryzhova I.M., Podvezennaya М.А. Historical trends in the amount and structure of organic carbon stocks in natural and managed ecosystems in European Russia. IOP Conf. Ser.: Earth Environ. Sci., 2020, vol. 438, no. 012005. https://doi.org/10.1088/1755-1315/438/1/012005
5. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Masson-Delmotte V., Zhai P., Pirani A., Connors S.L., Péan C., Berger S., Caud N., Chen Y., Goldfarb L., Gomis M.I., Huang M., Leitzell K., Lonnoy E., Matthews J.B.R., Maycock T.K., Waterfield T., Yelekçi O., Yu R., Zhou B., Eds. Cambridge; New York: CUP, 2021. https://doi.org/10.1017/9781009157896
6. Dankers R., Anisimov O, Falloon P., Gornall J., Reneva S., Wiltshire A. Climate Impacts in Russia: Changes in Carbon Storage and Exchange. UK: Met Office Hadley Centre, 2010. 112 p.
7. Falloon P., Smith P., Betts R., Jones C.D., Smith J., Hemming D., Challinor A. Carbon sequestration and greenhouse gas fluxes in cropland soils – climate opportunities and threats. Chapter 5. In Climate Change and Crops. Singh S.N., Ed. Berlin: Springer, 2009, pp. 81–111.
8. Glushkov I.V., Lupachik V., Prishchepov A.V., Potapov P.V., Pukinskaya M.Yu., Yaroshenko A.Yu., Zhuravleva I.V. Mapping of abandoned lands in Eastern Europe using Landsat and Google Earth Engine satellite images. In Мaterialy nauchnoi konferentsii “Sovremennaya nauka o rastitel’nosti” [Materials of the Sci. Conf. “Modern Science of Vegetation”]. Moscow, 2019, pp. 35–37. (In Russ.).
9. Gottschalk P., Smith J.U., Wattenbach M., Bellarby J., Stehfest E., Arnell N., Osborn T.J., Jones C., Smith P. How will organic carbon stocks in mineral soils evolve under future climate? Global projections using RothC for a range of climate change scenarios. Biogeosci., 2012, vol. 9, no. 8, pp. 3151–3171. https://doi.org/10.5194/bg-9-3151-2012
10. Harden J.W., Hugelius G., Ahlström A., Blankinship J.C., Bond-Lamberty B., Lawrence C.R., Loisel J., Malhotra A., Jackson R.B., Ogle S., Phillips C., Ryals R., Todd-Brown K., Vargas R., Vergara S.E., Cotrufo M.F., Keiluweit M., Heckman K.A., Crow S.E., Silver Wh.L., DeLonge M., Nave L.E. Networking our science to characterize the state, vulnerabilities, and management opportunities of soil organic matter. Glob. Change Biol., 2018, vol. 24, no. 2, pp. e705–e718. https://doi.org/10.1111/gcb.13896
11. Harris I., Osborn T.J., Jones Ph., Lister D. Version 4 of the CRU TS monthly high-resolution gridded multivariate climate dataset. Sci. Data, 2020, no. 7, pp. 1–18. https://doi.org/10.1038/s41597-020-0453-3
12. Herzfeld T., Heinke J., Rolinski S., Müller C. Soil organic carbon dynamics from agricultural management practices under climate change. Earth Syst. Dyn., 2021, vol. 12, no. 4, pp. 1037–1055. https://doi.org/10.5194/esd-12-1037-2021
13. IPCC, 2000. Land Use, Land Use Change, and Forestry. IPCC Special Report. Watson R.T., Noble I.R., Bolin B., Ravindranath N.H., Verardo D.J., Dokken D.J., Eds. Cambridge: CUP, 2000. 375 p.
14. Ivanov А.L., Savin I.Yu., Stolbovoi V.S., Dukhanin Yu.A., Kozlov D.N. Methodological approaches to the formation of a unified national system of monitoring and accounting of carbon balance and greenhouse gas emissions on lands of the agricultural fund of the Russian Federation. Byull. Pochv. Inst. Dokuchaeva, 2021, vol. 108, pp. 175–218. (In Russ.). https://doi.org/10.19047/0136-1694-2021-108-175-218
15. Ivanov A.L., Savin I.Yu., Stolbovoi V.S., Dukhanin Yu.A., Kozlov D.N., Bamatov I.M. Global climate and soil cover – implications for land use in Russia. Byull. Pochv. Inst. Dokuchaeva, 2021, vol. 107, pp. 5–32. (In Russ.). https://doi.org/10.19047/0136-1694-2021-107-5-32
16. Ivanov A.L., Stolbovoi V.S. The initiative “4 per 1000” – a new global challenge for the soils of Russia. Byull. Pochv. Inst. Dokuchaeva, 2019, vol. 98, pp. 185–202. (In Russ.). https://doi.org/10.19047/0136-1694-2019-98-185-202
17. Kogut B.M., Semenov V.M. Estimation of soil saturation with organic carbon. Byull. Pochv. Inst. Dokuchaeva, 2020, vol. 102, pp. 103–124. (In Russ.). https://doi.org/10.19047/0136-1694-2020-102-103-124
18. Krenke A.N. Identification of invariant states of agricultural landscapes based on hierarchical factor analysis of remote sensing information. Printsipy Ecolog., 2020, no. 3, pp. 16–27. (In Russ.). https://doi.org/10.15393/j1.art.2020.10942
19. Lieth H. Modeling the Primary Productivity of the World. In Primary productivity of the biosphere. Ecological studies, analysis and synthesis. Lieth H., Whittaker R.H., Eds. Berlin; Heidelberg: Springer Berlin Heidelberg, 1975, pp. 237–263.
20. Lugato E., Bampa F., Panagos P., Montanarella L., Jones A. Potential carbon sequestration of European arable soils estimated by modelling a comprehensive set of management practices. Glob. Change Biol., 2014, vol. 20, no. 11, pp. 3557–3567. https://doi.org/10.1111/gcb.12551
21. Minasny B., Malone B.P., McBratney A.B., Angers D.A., Arrouays D., Chambers A., Chaplot V., Chen Z.-S., Cheng K., Das B.S., Field D.J., Gimona A., Hedley C.B., Hong S.Y., Mandal B., Marchant B.P., Martin M., McConkey B.G., Mulder V.L., O’Rourke Sh., Richerde-Forges A.C., Odeh I., Padarian J., Paustian K., Pan G., Poggio L., Savin I., Stolbovoy V., Stockmann U., Sulaeman Y., Tsui Ch.-Ch., Vågen T.-G., van Wesemael B., Winowiecki L. Soil carbon 4 per mille. Geoderma, 2017, vol. 292, pp. 59–86. https://doi.org/10.1016/j.geoderma.2017.01.002
22. Paustian K., Collier S., Baldock J., Burgess R., Creque J., DeLonge M., Dungait J., Ellert B., Frank S., Goddard T., Govaerts B., Grundy M., Henning M., Izaurralde R.C., Madaras M., McConkey B., Porzig E., Rice Ch., Searle R., Seavy N., Skalsky R., Mulhern W., Jahn M. Quantifying carbon for agricultural soil management: from the current status toward a global soil information system. Carbon Manag., 2019, vol. 10, no. 6, pp. 567–587. https://doi.org/10.1080/17583004.2019.1633231
23. Paustian K., Larson E., Kent J., Marx E., Swan A. Soil C sequestration as a biological negative emission strategy. Front. Clim., 2019, vol. 1, no. 8. https://doi.org/10.3389/fclim.2019.00008
24. Pinke Z., Decsi B., Jámbor A., Kardos M.K., Kern Z., Kozma Z., Ács T. Climate change and modernization drive structural realignments in European grain production. Sci. Rep., 2022, vol. 12, no. 7374. https://doi.org/10.1038/s41598-022-10670-6
25. Poggio L., De Sousa L.M., Batjes N.H., Heuvelink G.B.M., Kempen B., Ribeiro E., Rossiter D. SoilGrids 2.0: producing soil information for the globe with quantified spatial uncertainty. Soil, 2021, vol. 7, no. 1, pp. 217–240. https://doi.org/10.5194/soil-7-217-2021
26. Romanenkov V.A. Dynamics of Soil Carbon Reserves in Agrocenoses of the European Territory of Russia (According to Long-Term Agrochemical Experiments. Doc. Sci. (Biol.) Dissertation. Moscow: Lomonosov MSU, 2011. 403 p.
27. Romanenkov V., Belichenko M., Petrova A., Raskatova T., Jahn G., Krasilnikov P. Soil organic carbon dynamics in long-term experiments with mineral and organic fertilizers in Russia. Geoderma Reg., 2019, vol. 17, no. e00221, pp. 1–10. https://doi.org/10.1016/j.geodrs.2019.e00221
28. Romanenkov V.A., Romanenko I.A., Rukhovich D.I., Koroleva P.V., Sirotenko O.D., Shevtsova L.K. Prognoz dinamiki zapasov organicheskogo ugleroda pakhotnykh zemel’ Evropeiskoi territorii Rossii [Forecast of the Organic Carbon Dynamics of Arable Soil of the European Territory of Russia]. Moscow: VNIIA Publ., 2009. 95 p.
29. Romanenkov V.A., Smith J.U., Smith P., Sirotenko O.D., Rukhovitch D.I., Romanenko I.A. Soil organic carbon dynamics of croplands in European Russia: estimates from the “model of humus balance”. Reg. Environ. Change, 2007, vol. 7, pp. 93–104. https://doi.org/10.1007/s10113-007-0031-7
30. Romanovskaya A.A. Organic carbon in the soils of the fallow lands of Russia. Pochvoved., 2006, no. 1, pp. 52–61. (In Russ.).
31. Romanovskaya A.A. Uncertainty assessment of greenhouse gas inventory in agriculture of Russia. Probl. Ecolog. Monitor. Model. Ecosistem, 2007, vol. 21, pp. 44–57. (In Russ.).
32. Rossiya v tsifrakh, 2020: Kratkii statisticheskii sbornik [Russia in Numbers, 2020: a Short Statistical Collection]. Malkov P.V., Ed. Moscow: Rosstat, 2020. 550 p.
33. Smith J.O., Smith P., Wattenbach M., Zaehle S., Hiederer R., Jones R.J.A., Montanarella L., Rounsevell M.D.A., Reginster I., Ewert F. Projected changes in mineral soil carbon of European croplands and grasslands, 1990– 2080. Glob. Change Biol., 2005, vol. 11, no. 12, pp. 2141–2152. https://doi.org/10.1111/j.1365-2486.2005.001075.x
34. Technical Specifications and Country Guidelines for Global Soil Organic Carbon Sequestration Potential Map (GSOCseq). Rome: FAO, 2020. 34 p.
35. Tretii otsenochnyi doklad ob izmeneniyakh klimata i ikh posledstviyakh na territorii Rossiiskoi Federatsii. Obshchee rezyume [The Third Assessment Report on Climate Change and its Consequences on the Territory of the Russian Federation. General summary]. Shumakov I.A., Ed. St. Petersburg: Naukoemkie Tekhnologii Publ., 2022. 124 p.
36. Urusevskaya I.S., Alyabina I.O., Shoba S.A. Karta pochvenno-ekologicheskogo raionirovaniya Rossiiskoi Federatsii. Masshtab 1 : 8000000. Poyasnitel’nyi tekst i legenda k karte: Uchebnoe posobie [Map of Soil and Ecological Zoning of the Russian Federation. Scale 1 : 8000000. Explanatory Text and Legend to the Map: Training Manual]. Urusevskaya I.S., Ed. Moscow: MAKS Press Publ., 2020. 100 p.
37. Vinogradova V.V., Glezer O.B., Gracheva R.G., Dorina A.L., Zolotokrylin A.N., Kotov A.V., Kurichev N.K., Morgunov B.A., Potashnikov V.Yu., Ptichnikov A.V., Proskuryakova L.N., Safonov G.V., Safonova Yu.A., Semakina A.A., Semiletov I.P., Sizonov A.G., Stetsenko A.V., Titkova T.B., Shakhova N.E., Sheludkov A.V. Vozdeistvie izmeneniya klimata na chelovecheskii potentsial, ekonomiku i ekosistemy: doklad k 23 Yasinskoi (Aprel’skoi) mezhdunarodnoi nauchnoi konferentsii po problemam razvitiya ekonomiki i obshchestva [The Impact of Climate Change on Human Potential, Economy and Ecosystems: a Report for the 23rd Yasin (April) International Scientific Conference on the Problems of Economic and Social Development]. Proskuryakova L.N., Ed. Moscow: Vyssh. Shk. Econ. Publ., 2022. 76 p.
38. Vtoroi otsenochnyi doklad Rosgidrometa ob izmeneniyakh klimata i ikh posledstviyakh na territorii Rossiiskoi Federatsii [The Second Assessment Report of Rosgidromet on Climate Change and Its Consequences on the Territory of the Russian Federation]. Moscow: Rosgidromet, 2014. 60 p.
Review
For citations:
Romanenko V.A., Meshalkina Yu.L., Gorbacheva A.Yu., Dobrovolskay V.A., Krenke A.N. Forecasting the Carbon Stock Dynamics in the Soils of Cultivated Croplands in European Russia in the Context of the Low-Carbon Development. Izvestiya Rossiiskoi Akademii Nauk. Seriya Geograficheskaya. 2023;87(4):584–596. (In Russ.) https://doi.org/10.31857/S2587556623040106. EDN: ZPYPTE