Economic and Natural Factors of Spatial Heterogeneity of Forest Carbon Emissions in Russia in the 2010s
https://doi.org/10.31857/S258755662304009X
EDN: CDFDWP
Abstract
Increasing the net carbon sequestration of forests is the only way for Russia to achieve carbon neutrality by 2060. In this context, along with measures to increase the area and quality of stands, ways to reduce carbon emissions due to human activities and natural disturbances are important. The article uses regression models of panel data to analyze the spatial heterogeneity of carbon emissions in the Russian forests in 2009–2021 as measured by Global Forest Watch project tools, depending on economic (volume of logging, government spending on forest management, forest protection and forest fire measures) and natural (scale of forest fires and outbreaks of mass reproduction of insect pests) factors. Logging and forest fires are expected to have the greatest impact on forest carbon losses, while spending on the performance of state functions in the sphere of forest relations has almost no response in the reduction of carbon emissions. Thus, in fact, the goal of preserving forests through public investment in appropriate measures has not yet been achieved. The resulting set of regression models can be used to predict the dynamics of the regional effects of forest carbon losses under changes in logging volumes and various trajectories of the dynamics of forest fire activity. Such analysis will be critically necessary for the formation of regional plans for greenhouse gas emission reduction, taking into account the maximum use of the potential of forests’ net carbon sequestration build-up.
Keywords
About the Author
A. I. PyzhevRussian Federation
Krasnoyarsk
Moscow
Novosibirsk
References
1. Arellano M., Bond S. Some tests of specification for panel data: Monte Carlo evidence and an application to employment equations. Rev. Econ. Stud., 1991, vol. 58, no. 2, pp. 277–297. https://doi.org/10.2307/2297968
2. Bartalev S.A., Stytsenko F.V. An assessment of the forest stands destruction by fires based on the remote sensing data on a seasonal distribution of burnt areas. Lesoved., 2021, no. 2, pp. 115–122. (In Russ.). https://doi.org/10.31857/S0024114821020029
3. Croissant Y., Millo G. Panel Data Econometrics in R: The plm Package. J. Stat. Softw., 2008, vol. 27, no. 2.
4. Filipchuk A., Moiseev B., Malysheva N., Strakhov V. Russian forests: A new approach to the assessment of carbon stocks and sequestration capacity. Environ. Dev., 2018, vol. 26, pp. 68–75. https://doi.org/10.1016/j.envdev.2018.03.002
5. Filipchuk A.N., Moiseev B.N., Malysheva N.V. New aspects of assessment of greenhouse gases sequestration by Russian forests in context of Paris Agreement on Climate Change. Lesokhoz. Inform., 2017, no. 1, pp. 88–98. (In Russ.).
6. Hansen M.C., Potapov P.V., Moore R., Hancher M., Turubanova S.A., Tyukavina A., Thau D., Stehman S.V., Goetz S.J., Loveland T.R., Kommareddy A., Egorov A., Chini L., Justice C.O., Townshend J.R.G. High-Resolution Global Maps of 21st-Century Forest Cover Change. Science, 2013, vol. 342, no. 6160, pp. 850–853. https://doi.org/10.1126/science.1244693
7. Harris N.L., Gibbs D.A., Baccini A., Birdsey R.A., de Bruin S., Farina M., Fatoyinbo L., Hansen M.C., Herold M., Houghton R.A., Potapov P.V., Suarez D.R., RomanCuesta R.M., Saatchi S.S., Slay C.M., Turubanova S.A. Tyukavina A. Global maps of twenty-first century forest carbon fluxes. Nat. Clim. Change, 2021, vol. 11, pp. 234– 240. https://doi.org/10.1038/s41558-020-00976-6
8. Kharuk V.I., Ponomarev E.I., Ivanova G.A., Dvinskaya M.L., Coogan S.C.P., Flannigan M.D. Wildfires in the Siberian taiga. Ambio, 2021, vol. 50, pp. 1953–1974. https://doi.org/10.1007/s13280-020-01490-x
9. Pan Y., Birdsey R.A., Fang J., Houghton R., Kauppi P.E., Kurz W.A., Phillips O.L., Shvidenko A., Lewis S.L., Canadell J.G., Ciais Ph., Jackson R.B., Pacala S.W., Mcguire A.D., Piao S., Rautiainen A., Sitch S., Hayes D. A Large and Persistent Carbon Sink in the World’s Forests. Science, 2011, vol. 333, iss. 6045, pp. 988–993. https://doi.org/10.1126/science.1201609
10. Porfiriev B.N., Shirov A.A., Semikashev V.V., Kolpakov A.Yu. Economic risks in the context of policy development with low greenhouse gas emissions in Russia. Energet. Politika, 2020, no. 5 (147), pp. 92–103. (In Russ.). https://doi.org/10.46920/2409-5516_2020_5147_92
11. Pyzhev A.I. Nobody cancelled the climate agenda: why it’s important for Russian economy. ECO, 2022, no. 7 (577), pp. 31–50. (In Russ.). https://doi.org/10.30680/ECO0131-7652-2022-7-31-50
12. Pyzhev A.I., Gordeev R.V., Vaganov E.A. Reliability and Integrity of Forest Sector Statistics – A Major Constraint to Effective Forest Policy in Russia. Sustain., 2021, vol. 1, no. 13, 86 p. https://doi.org/10.3390/su13010086
13. Rogelj J., Geden O., Cowie A., Reisinger A. Net-Zero Emissions Targets Are Vague: Three Ways to Fix. Nature, 2021, vol. 591, no. 7850, pp. 365–368. https://doi.org/10.1038/d41586-021-00662-3
14. Romanov A.A., Tamarovskaya A.N., Gloor E., Brienen R., Gusev B.A., Leonenko E.V., Vasiliev A.S., Krikunov E.E. Reassessment of carbon emissions from fires and a new estimate of net carbon uptake in Russian forests in 2001–2021. Sci. Total Environ., 2022, vol. 846, no. 157322. https://doi.org/10.1016/j.scitotenv.2022.157322
15. Romanovskaya A.A., Trunov A.A., Korotkov V.N., Karaban R.T. The problem of accounting for the absorptive capacity of Russian forests in the Paris Agreement. Lesoved., 2018, no. 5, pp. 323–334. (In Russ.).
16. Schepaschenko D., Moltchanova E., Fedorov S., Karminov V., Onitkov P., Santoro M., See L., Kositsyn V., Shvidenko A., Romanovskaya A., Korotkov V., Lesiv M., Bartalev S., Fritz S., Shchepaschenko M., Kraxner F. Russian forest sequesters substantially more carbon than previously reported. Sci. Rep., 2021, vol. 11, no. 1, p. 12825. https://doi.org/10.1038/s41598-021-92152-9
17. Shwarts E.A., Ptichnikov A.V. Low-carbon development strategy and the role of forests in its implementation. Nauch. Tr. Vol’n.Ekonom. Obshch., 2022, no. 236, pp. 399–426. (In Russ.).
18. Shimizu K., Ota T., Mizoue N. Accuracy Assessments of Local and Global Forest Change Data to Estimate Annual Disturbances in Temperate Forests. Remote Sens., 2020, vol. 15, no. 12, p. 2438. https://doi.org/10.3390/rs12152438
19. Shvidenko A., Schepaschenko D. The carbon budget of Russia’s forests. Sibir. Lesnoi Zh., 2014, no. 1, pp. 69– 92. (In Russ.).
20. Tennekes M. tmap: Thematic Maps in R. J. Stat. Softw., 2018, vol. 84, no. 6.
21. Vaganov E.A., Porfiryev B.N., Shirov A.A., Kolpakov A.Yu., Pyzhev A.I. Estimation of the contribution of Russian forests to the reduction of climate change risks. Reg. Econ., 2021, vol. 17, no. 4, pp. 1096–1109. (In Russ.). https://doi.org/10.17059/EKON.REG.2021-4-4
22. Wickham H., Averick M., Bryan J., Chang W., McGowan L.D’A., François R., Grolemund G., Hayes A., Henry L., Hester J., Kuhn M., Pedersen T.L., Miller E., Bache S.M., Müller K., Ooms J., Robinson D., Seidel D.P., Spinu V., Takahashi K., Vaughan D., Wilke C., Woo K., Yutani H. Welcome to the Tidyverse. J. Stat. Softw., 2019, vol. 4, no. 43. https://doi.org/10.21105/joss.01686
23. Zamolodchikov D.G., Grabovskii V.I., Kaganov V.V. Ecosystem services and spatial distribution of protective forests of the Russian Federation. Lesoved., 2021, no. 6, pp. 581–592. (In Russ.).
24. Zhang D., Wang H., Wang X., Lü Z. Accuracy Assessment of the Global Forest Watch Tree Cover 2000 in China. Int. J. Appl. Earth Obs. Geoinf., 2020, no. 87, p. 102033. https://doi.org/10.1016/j.jag.2019.102033
Review
For citations:
Pyzhev A.I. Economic and Natural Factors of Spatial Heterogeneity of Forest Carbon Emissions in Russia in the 2010s. Izvestiya Rossiiskoi Akademii Nauk. Seriya Geograficheskaya. 2023;87(4):637–648. (In Russ.) https://doi.org/10.31857/S258755662304009X. EDN: CDFDWP