Methane Concentration and Fluxes in Volga River Reservoirs
https://doi.org/10.31857/S2587556623060080
EDN: FNQMWD
Abstract
The paper presents the results of methane f lux and its concentration measurements in the reservoirs of the Volga cascade: Ivankovskoye, Rybinskoye, Gorkovskoye, Kuybyshevskoye, and Volgogradskoye reservoirs. The article summarizes the materials from the 2017–2023 seasonal observations archive. Measurements of the gas f lux were carried out by the f loating chamber method, the methane concentration determination in the samples was carried out by the headspace method. The spatial and seasonal variability of both methane content and its emissions depending on the coefficient of water exchange, weather conditions, the nature of bottom sediments, and depth was revealed. High values of methane concentration and methane f lux are observed in the presence of stratification, while during vertical mixing, the f lux values decrease significantly. The highest methane f lux values are characteristic of the heavily populated by macrophytes shallow Shoshinskiy reach of the Ivankovskoye reservoir (up to 334 mgC-CH4/(m2 day)), the f looded left bank f loodplain of the Gorkovskoye reservoir (up to 548 mgC-CH4/(m2 day)), where they are associated with weak f low and intra-mold circulation, and also for Chesnava bay of the Rybinskoye reservoir (up to 1086 mgC-CH4/(m2 day)), associated with anthropogenic pollution and low f low rates. In the bays of Kuybyshevskoye and Volgogradskoye reservoirs that receive inflows with increased mineralization, stratification may increase due to density stratification, the formation of zones with oxygen deficit, and increase in methane f lux despite the small amount of organic matter in sediments. The example of the Gorkovskoye reservoir shows the effect of the dam on the spatial structure of methane f lux and concentration. Comparison with generalized data on specific methane f lows from moderate water reservoirs showed that in the Volga cascade, these values are lower in all months of the open water period except August.
About the Authors
M. G. GrechushnikovaRussian Federation
Faculty of Geography Moscow State University
Moscow
I. A. Repina
Russian Federation
Moscow
N. L. Frolova
Russian Federation
Faculty of Geography Moscow State University
Moscow
S. A. Agafonova
Russian Federation
Faculty of Geography Moscow State University
Moscow
V. A. Lomov
Russian Federation
Faculty of Geography Moscow State University
Moscow
D. I. Sokolov
Russian Federation
Faculty of Geography Moscow State University
Moscow
V. M. Stepanenko
Russian Federation
Faculty of Geography Moscow State University
Moscow
V. A. Efimov
Russian Federation
Faculty of Geography Moscow State University
Moscow
A. A. Mol’kov
Russian Federation
Nizhny Novgorod
I. A. Kapustin
Russian Federation
Nizhny Novgorod
References
1. Averina A.A., Antipov N.E., Vinogorov A.A., Volovodov A.A., Golovnin K.I., Kuznechenko I.A., Ovchinnikova O.V., Petrov N.A., Poluhin S.I., Sushincev I.M., Horosheva A.S., Efimov V.A., Lomov V.A., Frolova N.L. Assessment of the total methane content in the Rybinsk reservoir in winter and calculation of individual components of the methane balance. In Issledovaniya molodykh geografov: sb. statei uchastnikov zimnikh studencheskikh ekspeditsii [Research by Young Geographers. Collection of Articles by Participants of Winter Student Expeditions]. Moscow: MGU, 2022, pp. 71–80. (In Russ.).
2. Bastviken D., Santoro A., Marotta H. Methane emissions from Pantanal, South America, during the low water season: toward more comprehensive sampling. Environ. Sci. Technol., 2010, vol. 44, no. 14, pp. 5450–5455. https://doi.org/10.1021/es1005048
3. Bastviken D., Tranvik L., Downing J., Crill P., EnrichPrast A. Freshwater Methane Emissions Offset the Continental Carbon Sink. USA: Science, 2011, vol. 331, pp. 6013–6063. https://doi.org/10.1126/science.1196808
4. Chistaya energiya [Clean Energy]. Zavolzhye: Rushydro Publ., 2020. (In Russ.).
5. Deemer B.R., Harrison J.A., Li S., Beaulieu J.J., Del Sontro T., Barros N., Bezerra-Neto J.F., Powers S.M., dos Santos M.A., Vonk J.A. Greenhouse Gas Emissions from Reservoir Water Surfaces: A New Global Synthesis. BioScience, 2016, vol. 66, no. 11, pp. 949–964. https://doi.org/10.1093/biosci/biw117
6. Dzyuban A.N. Microbiological processes of organic matter circulation in bottom sediments of reservoirs of the Volga-Kama cascade. Water Resour., 1999, vol. 26, no. 4, pp. 262–271. (In Russ.).
7. Dzyuban A.N. Microbiological processes of methane transformation and organic matter decomposition in bottom sediments of the reservoirs of the Volga and Kama rivers. Hydrobiol. J., 2004, vol. 40, no. 4, pp. 69–74. https://doi.org/10.1615/HydrobJ.v40.i4.60
8. Dzyuban A.N. Destruktsiya organicheskogo veshchestva i tsikl metana v donnykh otlozheniyakh vnutrennikh vodoemov [Destruction of Organic Matter and Methane Cycle in Bottom Sediments of Inland Reservoirs]. Yaroslavl: Printhouse Publ., 2010. 174 p.
9. Dzyuban A.N. Methane and its transformation processes in water of some tributaries of the Rybinsk Reservoir. Water Resour., 2011, vol. 38, pp. 615–620. https://doi.org/10.1134/S0097807811050046
10. Dzyuban A.N. The methane cycle in the soils of reservoirs of the Volga-Kama cascade and its role in the destruction of organic matter. In Tr. Inst. biologii vnutrennikh vod RAN. T. 77 [Proc. Inst. of Biology of Inland Waters RAS. Vol. 77], 2016, pp. 21–36. (In Russ.).
11. Elistratov V.V., Maslikov V.I., Sidorenko G.I., Molodtsov D.V. Greenhouse gas emissions from hydroelectric reservoirs: analysis of research experience and organization of experiments in Russia. Altern. Energetica Ecol. (ISJAEE), 2014, no. 11, pp. 146–159. (In Russ.).
12. Fedorov Yu.A., Tambieva N.S., Gar’kusha D.N., Khoroshevskaya V.O. Metan v vodnykh ekosistemakh [Methane in Aquatic Ecosystems]. Rostov-on-Don; Moscow: Rostizdat Publ., 2005. 329 p.
13. Gar’kusha D.N., Fedorov Yu.A. Faktory formirovaniya kontsentratsii metana v vodnykh ekosistemakh [Factors of Formation of Methane Concentrations in Aquatic Ecosystems]. Rostov-on-Don: Southern Fed. Univ. Publ., 2021. 366 p.
14. Gidrometeorologicheskii rezhim ozer i vodokhranilishch. Vodokhranilishcha Verkhnei Volgi [Hydrometeorological Regime of Lakes and Reservoirs. Reservoirs of the Upper Volga]. Leningrad: Hydrometeoizdat Publ., 1975. 290 p.
15. Giles J. Methane quashes green credentials of hydropower. Nature, 2006, vol. 444, pp. 524–525. https://doi.org/10.1038/444524a
16. GOST 23740-2016. Grunty. Metody opredeleniya soderzhaniya organicheskikh veshchestv [State Standard 23740-2016. Soils. Methods for Determining the Content of Organic Substances]. Moscow: Standartinform Publ., 2017.
17. Grechushnikova M.G., Badyukov D.D., Savvichev A.S., Kazantsev V.S. Seasonal and spatial changes in methane content in Mozhaisk reservoir in summer. Meteorol. Hydrol., 2017, no. 11, pp. 67–78. (In Russ.).
18. Grechushnikova M.G., Dobrohotova D.V., Kapustin I.A., Mol’kov A.A., Leshchev G.V. Study of the variability of hydrological characteristics in the near-dam section of the Gorky reservoir in 2022. In Materialy 7-oi vserossiiskoi nauch. konf. “Problemy ekologii Volzhskogo basseina”. T. 5 [Proc. of the 7th All-Russian Sci. Conf. “Problems of Ecology of the Volga Basin”. Vol. 5]. Nizhny Novgorod: Volga St. Univ. Water Transp., 2022, pp. 1–6. (In Russ.).
19. Grechushnikova M.G., Repina I.A., Stepanenko V.M., Kazantsev V.S., Artamonov A.Yu., Lomov V.A. Methane Emission From the Surface of the Mozhaisk ValleyType Reservoir. Geogr. Nat. Resour., 2019, vol. 40, pp. 247–255. https://doi.org/10.1134/S1875372819030077
20. Grechushnikova M.G., Lomova D.V., Lomov V.A., Kremenetskaya E.R., Grigor’eva I.L., Komissarov A.B., Fedorova L.P. Space and Time Variations of Hydroenvironmental Characteristics of the Ivankovo Reservoir in Years with Different Weather Conditions. Water Resour., 2023, vol. 50, pp. 109–116. https://doi.org/10.1134/S0097807823010074
21. Grechushnikova M.G., Repina I.A., Stepanenko V.M., Kazantsev V.S., Artamonov A.Yu., Varentsov M.I., Lomova D.V., Mol’kov A.A., Kapustin I.A. Spatial and temporal variations of methane content and emission in reservoirs with different water exchange coefficient. Izv. Russ. Geogr. Obshch., 2018, vol. 150, no. 5, pp. 14–33. (In Russ.). https://doi.org/10.7868/S086960711805002X
22. Greenhouse Gas Emissions: Fluxes and Processes, Hydroelectric Reservoirs and Natural Environments. Environmental Science Series. Tremblay A., Varfalvy L., Roehm C., Garneau M., Eds. N.Y.: Springer, 2005. 732 p.
23. Ivan’kovskoe vodokhranilishche: Sovremennoe sostoyanie i problemy okhrany [Ivankovskoe Reservoir: Current State and Problems of Protection]. Moscow: Nauka Publ., 2000. 344 p.
24. Johnson M.S., Matthews E., Bastviken D., Deemer B., Du J., Genovese V. Spatiotemporal methane emission from global reservoirs. J. Geophys. Res. Biogeosci., 2021, vol. 126, no. 8, pp. 1–19. https://doi.org/10.1029/2021JG006305
25. Kuibyshevskoe vodokhranilishche (nauchno-informatsionnyi spravochnik) [Kuibyshev Reservoir (Scientific Information Guide)]. Tolyatti: IEVB RAS Publ., 2008. 123 p.
26. Lazareva V.I., Stepanova I.E., Tsvetkov A.I., Pryanichnikova E.G., Perova S.N. Oxygen regime of the Volga and Kama reservoirs during the period of climate warming – consequences for zooplankton and zoobenthos. In Tr. Inst. biologii vnutrennikh vod RAN. T. 84 [Proc. Inst. of Biology of Inland Waters RAS. Vol. 84], 2018, pp. 47– 84. (In Russ.).
27. Li S., Zhang Q. Carbon emission from global hydroelectric reservoirs revisited. Environ. Sci. Pollut. Res., 2014, vol. 21, pp. 13636–13641. https://doi.org/10.1007/s11356-014-3165-4
28. Lima I., Ramos F., Bambace L., Rosa R. Methane emissions from large dams as renewable energy resources: a developing nation perspective. Mitig. Adapt. Strateg. Glob. Chang., 2006, vol. 13, pp. 1381–1386. https://doi.org/10.1007/s11027-007-9086-5
29. Litvinov A.S., Roshhupko V.F. Long-term and seasonal water level fluctuations of the Rybinsk Reservoir and their role in the functioning of its ecosystem. Water Resour., 2007, vol. 34, pp. 27–34. https://doi.org/10.1134/S0097807807010034
30. Lomov V., Grechushnikova M., Kazantsev V., Repina I. Reasons and patterns of spatio-temporal variability of methane emission from the Mozhaysk Reservoir in summer period. E3S Web of Conf. IV Vinogradov Conf., 2020, no. 163, article 03010. https://doi.org/10.1051/e3sconf/202016303010
31. Louis V.L., Kelly C.A., Duchemin E., Rudd J.W.M., Rosenberg D.M. Reservoir surfaces as sources of greenhouse gases to the atmosphere, and their surface areas have increased to the point where they should be included in global inventories of anthropogenic emissions of greenhouse gases. BioScience, 2000, vol. 50, no. 9, pp. 766–775. https://doi.org/10.1641/0006-3568(2000)050[0766:RSASOG]2.0.CO;2
32. Martynova M.V. Donnye otlozheniya kak sostavlyayushchaya limnicheskikh ekosistem [Bottom Sediments as a Component of Limnic Ecosystems]. Moscow: Nauka Publ., 2010. 243 p.
33. Mineeva N.M., Semadeny I.V., Makarova O.S. Chlorophyll Content and the Modern Trophic State of the Volga River Reservoirs (2017–2018). Inland Water Biol., 2020, vol. 13, pp. 327–330. https://doi.org/10.1134/S199508292002008X
34. Nikanorov Yu.I. Ivankovskoe reservoir. Izv. GosNIORH, 1975, vol. 102, pp. 5–25. (In Russ.).
35. Repina I.A., Terskii P.N., Gorin S.L., Agafonova S.A., Akhmerova N.D., Vasilenko A.N., Grechushnikova M.G., Grigor’ev V.Yu., Kazantsev V.S., Lisina A.N., Lomov V.A., Mishin D.V., Sazonov A.A., Stepanenko V.M., Sokolov D.I., Timoshenko A.A., Frolova N.L., Shesterkin V.P. Field Measurements of Methane Emission at Largest Reservoirs in Russia in 2021. The Start of Large-Scale Studies. Water Resour., 2022, vol. 49, pp. 1003–1008. https://doi.org/10.1134/S0097807822060148
36. Rosentreter J.A., Borges A.V., Deemer B.R., Holgerson M.A., Liu S., Song C., Eyre B.D. Half of global methane emissions come from highly variable aquatic ecosystem sources. Nat. Geoscience, 2021, vol. 14, no. 4, pp. 225–230. https://doi.org/10.1038/s41561-021-00715-2
37. RusGidro. Godovoi otchet [RusHydro. Annual Report]. Moscow: Rushydro Publ., 2008. 124 p.
38. Shashulovskij V.A., Mosiyash S.S. Formirovanie biologicheskikh resursov Volgogradskogo vodokhranilishcha v khode suktsessii ego ekosistemy [Formation of Biological Resources of the Volgograd Reservoir during the Succession of its Ecosystem]. Moscow: Tovar. Nauch. Izdan. KMK Publ., 2010. 250 p.
39. Zakonnov V.V. Silt accumulation in the reservoir system of the Volga cascade. In Tr. Inst. biologii vnutrennikh vod RAN. T. 78 [Proc. Inst. of Biology of Inland Waters RAS. Vol. 78], 2016, pp. 30–39. (In Russ.).
Review
For citations:
Grechushnikova M.G., Repina I.A., Frolova N.L., Agafonova S.A., Lomov V.A., Sokolov D.I., Stepanenko V.M., Efimov V.A., Mol’kov A.A., Kapustin I.A. Methane Concentration and Fluxes in Volga River Reservoirs. Izvestiya Rossiiskoi Akademii Nauk. Seriya Geograficheskaya. 2023;87(6):899-913. (In Russ.) https://doi.org/10.31857/S2587556623060080. EDN: FNQMWD