Sediment Yield in the Caucasus Mountains and Its Trends as a Reflection of Climate Change and Anthropogenic Impact
https://doi.org/10.31857/S2587556623070075
EDN: HEUABX
Abstract
The sediment runoff of mountain rivers is an important characteristic that reflects the intensity of denudation in various altitudinal zones, as well as the spatial and temporal features of its changes. The Caucasus region, which includes the Greater and Lesser Caucasus, is characterized by significant territorial contrast associated with differences in the geological and geomorphological structure, seismo-tectonic activity, climate, which together determine the lifestyle of the local population and the features of anthropogenic impact on landscapes. The paper presents the results of estimates of the contemporary rates of denudation of the region, obtained on the basis of processing a database on the f low of suspended sediments of rivers at 194 gauge stations with a duration of observations of more than 10 years. To identify the influence of the main natural and anthropogenic factors on the sediment runoff of rivers, calculated and published data on spatially distributed indicators characterizing individual factors or their combinations were used. Statistical processing of dependencies between individual indicators and sediment runoff of rivers was carried out. It has been established that the mean suspended sediment yield (SSY) for the region is 446 t km–2 yr–1. It reaches its maximum values (SSY > 1500 t km–2 year–1) in the Eastern Caucasus, where it has remained high in recent decades and continues to grow in a number of river basins. For other parts of the Greater Caucasus, a trend of decreasing sediment runoff was revealed, due to a decrease in the glacial supply of rivers and, more locally, a decrease in the area of arable land in the mountains.
Keywords
About the Authors
V. N. GolosovRussian Federation
Faculty of Geography Lomonosov Moscow State University
Moscow, Kazan
A. S. Tsyplenkov
Russian Federation
Faculty of Geography
Moscow
References
1. Abatzoglou J.T., Dobrowski S.Z., Parks S.A., et al. Data Descriptor: TerraClimate a High-Resolution Global Dataset of Monthly Climate and Climatic Water Balance from 1958–2015. Sci. Data, 2018, vol. 5, art. 170191. https://doi.org/10.1038/sdata.2017.191
2. Abduev M.A. Denudation in the mountainous regions of Azerbaijan according to the data on the runoff of sediments and dissolved substances. Gidrometeorol. Ekol., 2011, no. 4, pp. 122–131. (In Russ.).
3. Akhundov S.A. Intensity of denudation in the Azerbaijan part of the Caucasus. Geomorfol., 1974, no. 3, pp. 46– 52. (In Russ.).
4. Al-Chokhachy R., Black T.A., Thomas C., et al. Linkages between unpaved forest roads and streambed sediment: why context matters in directing road restoration. Restor. Ecol., 2016, vol. 24, pp. 589–598. https://doi.org/10.1111/rec.12365
5. Berkovich K.M. Ruslovye protsessy na rekakh v sfere vliyaniya reservuarov [Channel Processes on Rivers in the Sphere of Influence of Reservoirs]. Moscow: Mosk. Univ. Publ., 2012. 163 p.
6. Borga M., Stoffel M., Marchi L., Marra F., Jakob M. Hydrogeomorphic response to extreme rainfall in headwater systems: flash floods and debris flows. J. Hydrol., 2014, vol. 518, part B, pp. 194–205. https://doi.org/10.1016/j.jhydrol.2014.05.022
7. Buchner J., Yin H., Frantz D., et al. Land-Cover Change in the Caucasus Mountains since Based on the Topographic Correction of Multi-Temporal Landsat Composites. Remote Sens. Environ., 2020, vol. 248, art. 111967. https://doi.org/10.1016/j.rse.2020.111967
8. Cendrero A., Remondo J., Beylich A.A., et al. Denudation and geomorphic change in the Anthropocene; a global overview. Earth Sci. Rev., 2022, vol. 233, art. 104186. https://doi.org/10.1016/j.earscirev.2022.104186
9. Chalov S.R., Tersky P.N., Efimova L.E., Terskaya A.I., Efimov V.A., Danilovich I.S. Problems of hydrological monitoring in the basins of transboundary rivers of Eastern Europe (on the example of the Zapadnaya Dvina). Inzhenern. Izysk., 2019, no. 13, pp. 32–44. (In Russ.).
10. DiBiase R.A. Whipple K.X., Heimsath A.M., et al. Landscape Form and Millennial Erosion Rates in the San Gabriel Mountains, CA. Earth Planet. Sci. Lett., 2010, vol. 289, pp. 134–144. https://doi.org/10.1016/j.epsl.2009.10.036
11. Gabet E.J., Mudd S.M. A Theoretical Model Coupling Chemical Weathering Rates with Denudation Rates. Geology, 2009, vol. 37, pp. 151–154. https://doi.org/10.1130/G25270A.1
12. Gabrielyan G.K. The intensity of denudation in the Caucasus. Geomorfol., 1971, no. 1, pp. 22–27. (In Russ.).
13. Garcia-Ruiz J.M., Lasanta T. Land-use changes in the Spanish Pyrenees. Mt. Res. Dev., 1990, vol. 10, no. 3, pp. 267–279.
14. Garcıa-Ruiz J.M., Lana-Renault N. Hydrological and erosive consequences of farmland abandonment in Europe, with special reference to the Mediterranean region – a review. Agric. Ecosyst. Environ., 2011, vol. 140, pp. 317–338. https://doi.org/10.1016/j.agee.2011.01.003
15. Giardini D., Grünthal G., Shedlock K.M., Zhang P. The GSHAP Global Seismic Hazard. In International Handbook of Earthquake and Engineering Seismology, 2003, pp. 1233–1239.
16. Golosov V.N., Sosin P.M., Belyaev V.R., Wolfgramm B., Khodzhaev Sh. Effect of irrigation-induced erosion on the degradation of soils in river valleys of the alpine Pamir. Eurasian Soil Sci., 2015, vol. 48, no. 3, pp. 325–335. https://doi.org/10.1134/S1064229315010056
17. Hartmann J., Moosdorf N. The new global lithological map database GLiM: A representation of rock properties at the Earth surface. Geochem. Geophys. Geosyst., 2012, vol. 13, no. 12. https://doi.org/10.1029/2012GC004370
18. Hartmann, J., Moosdorf, N., Lauerwald R., et al. Global Chemical Weathering and Associated P-Release—The Role of Lithology, Temperature and Soil Properties. Chem. Geol., 2014, vol. 363, pp. 145–163. https://doi.org/10.1016/j.chemgeo.2013.10.025
19. Hengl T., de Jesus J.M., Heuvelink G.B.M., et al. SoilGrids250m: Global Gridded Soil Information Based on Machine Learning. PLoS ONE, 2017, vol. 12, art. e0169748. https://doi.org/10.1371/journal.pone.0169748
20. Kharchenko S.V., Fedin A.V., Golosov V.N. Denudation rates in periglacial areas of high mountains: methods and results of studies. Geomorfol., 2021, no. 1, pp. 3–18. (In Russ.). https://doi.org/10.31857/S0435428121010065
21. Khmaladze G.N. Vzveshennye nanosy rek Armyanskoi SSR [Suspended Sediments of the Rivers of the Armenian SSR]. Leningrad: Gidrometeoizdat, 1964. 246 p.
22. Kozak J. Forest cover change in the Western Carpathians in the past 180 years. Mt. Res. Dev., 2003, vol. 23, no. 4, pp. 369–375. https://doi.org/10.1659/0276-4741(2003)023[0369:FCCITW]2.0.CO;2
23. Kurbatova I.E. Monitoring the transformation of Krasnodar Reservoir utilizing high resolution satellite data. Sovrem. Probl. Dist. Zondir. Zemli Kosmosa, 2014, vol. 11, no. 3, pp. 42–53. (In Russ.).
24. Laguta A.A., Pogorelov A.V. Peculiarities of siltation of the Krasnodar reservoir. Evaluation experience from bathymetric surveys. Geogr. Vestn., 2018, vol. 47, no. 4, pp. 54–66. (In Russ.). Laguta A.A., Pogorelov A.V. Transformation of the Krasnodar Reservoir (1941–2018).
25. Izv. Vyssh. Ucheb. Uchrezhd. Sev.-Kavkaz. Region. Estestv. Nauki, 2019, no. 3, pp. 45–54. (In Russ.). https://doi.org/10.23683/0321-3005-2019-3-45-54
26. Larionov G.A. Eroziya i deflyatsiya pochv: osnovnye zakonomernosti i kolichestvennye otsenki [Erosion and Deflation of Soils: Basic Regularities and Quantitative Estimates]. Moscow: Mosk. Univ. Publ., 1993. 200 p.
27. Makkaveev N.I., Mandych A.F., Chalov R.S. Influence of the ascending development of the relief on deep erosion and solid runoff of the rivers of Western Georgia. Vestn. Mosk. Univ., Ser. 5: Geogr., 1968, no. 4, pp. 52–58. (In Russ.).
28. Mandych A.F. The value of the sediment runoff of the rivers of Western Georgia. Vestn. Mosk. Univ., Ser. 5: Geogr., 1967, no. 3, pp. 134–137. (In Russ.).
29. Mozzherin V.V., Sharifullin A.G. Estimation of Current Denudation Rate of the Mountains Based on the Suspended Sediment Runoff of the Rivers (the Tien Shan, the Pamir-Alai, the Caucasus, and the Alps as an Example). Geomorfol., 2015, no. 1, pp. 15–23. (In Russ.). https://doi.org/10.15356/0435-4281-2014-1-15-23
30. Panagos P., Borrelli P., Meusburger K. et al. Global Rainfall Erosivity Assessment Based on High-Temporal Resolution Rainfall Records. Sci. Rep., 2017, vol. 7, art. 4175. https://doi.org/10.1038/s41598-017-04282-8
31. Petrov O.A. Analysis of the dynamics of silting of the Chiryurt reservoir on the River Sulak. Izv. Vseross. Nauch.-Iss. Inst. Gidrotekh. Vedeneeva, 2018, vol. 290, pp. 47–54. (In Russ.).
32. Petrov O.A., Saidov M.A. Analysis of the dynamics of siltation of reservoirs on the river. Sulak and its tributaries. Gidrotekhn. Stroitel., 2019, no. 9, pp. 43–47. (In Russ.).
33. Pobelat D.A., Medvedev A.V. Monitoring of the processing of the banks of the Krasnodar reservoir. In Sb. statei XI Vseross. Konf. molodykh uchenykh, posvyashchennoi 95- letiyu Kubanskogo GAU i 80-letiyu so dnya obrazovaniya Krasnodarskogo kraya [Collection of Articles of the XI All-Russian Conf. of Young Scientists Dedicated to the 95th Anniversary of the Kuban State Agrarian University and the 80th Anniversary of the Formation of the Krasnodar Krai]. Krasnodar: Kuban. Agrar. Univ. Publ., 2017, pp. 829–830. (In Russ.).
34. Pogorelov A.V., Laguta A.A., Kiselev E.N. New information about the silting of the Krasnodar reservoir according to bathymetric survey data. Geogr. Vestn., 2022, vol. 61, no. 2, pp. 166–179. (In Russ.).
35. Potapov P., Li X., Hernandez-Serna A., et al. Mapping Global Forest Canopy Height through Integration of GEDI and Landsat Data. Remote Sens. Environ., 2021, vol. 253, art. 112165. https://doi.org/10.1016/j.rse.2020.112165
36. Raup B., Racoviteanu A., Khalsa S.J.S., et al. The GLIMS Geospatial Glacier Database: A New Tool for Studying Glacier Change. Glob. Planet. Chang., 2007, vol. 56, pp. 101–110. https://doi.org/10.1016/j.gloplacha.2006.07.018
37. Remondo J., Soto J., González-Díez A., et al. Human impact on geomorphic processes and hazards in mountain areas in northern Spain. Geomorphology, 2005, vol. 66, pp. 69– 84. https://doi.org/10.1016/j.geomorph.2004.09.009
38. Schirpke U., Tasser E., Leitinger G., et al. Using the Ecosystem Services Concept to Assess Transformation of Agricultural Landscapes in the European Alps. Land, 2022, vol. 11, no. 49. https://doi.org/10.3390/land11010049
39. Schliep K., Hechenbichler K. kknn: Weighted k-Nearest Neighbors, 2016.
40. Schmidt L.K., Francke T., Rottler E., et al. Suspended sediment and discharge dynamics in a glaciated alpine environment: identifying crucial areas and time periods on several spatial and temporal scales in the Ötztal, Austria. Earth Surf. Dynam., 2022, vol. 10, pp. 653– 669. https://doi.org/10.5194/esurf-10-653-2022
41. Schwanghart W., Scherler D. Bumps in River Profiles: Uncertainty Assessment and Smoothing Using Quantile Regression Techniques. Earth Surf. Dynam., 2017, vol. 5, pp. 821–839. https://doi.org/10.5194/esurf-5-821-2017
42. Shvarev S.V., Kharchenko S.V., Golosov V.N., Uspensky M.I. A Quantitative Assessment of Mudflow Intensification Factors on the Aibga Ridge Slope (Western Caucasus) over 2006–2019. Geogr. Nat. Resour., 2021, vol. 42, pp. 122–130. https://doi.org/10.1134/S1875372821020128
43. Syvitski J., Restepo-Angel J., Saito Y. et al. Earth’s sediment cycle during the Anthropocene. Nat. Rev. Earth Environ., 2022, vol. 3, pp. 179–196. https://doi.org/10.1038/s43017-021-00253-w
44. Tielidze L.G., Nosenko G.A., Khromova T.E., et al. Strong acceleration of glacier area loss in the Greater Caucasus between 2000 and 2020. Cryosph., 2022, vol. 16, pp. 489– 504. https://doi.org/10.5194/tc-16-489-2022
45. Tielidze L.G., Wheate R.D. The greater Caucasus glacier inventory (Russia, Georgia and Azerbaijan). Cryosph., 2018, vol. 12, no. 1, pp. 81–94. https://doi.org/10.5194/tc-12-81-2018
46. Toropov P.A., Aleshina M.A., Semenov V.A. Trends in climate change in the Black Sea-Caspian region over the past 30 years. Vestn. Mosk. Univ., Ser. 5: Geogr., 2018, no. 2, pp. 67–77. (In Russ.).
47. Toropov P.A., Aleshina M.A., Grachev A.M. Large-scale climatic factors driving glacier recession in the Greater Caucasus, 20th–21st century. Int. J. Climatol., 2019, vol. 39, no. 12, pp. 4703–4720. https://doi.org/10.1002/joc.6101
48. Tsyplenkov A., Vanmaercke M., Golosov V., et al. Suspended Sediment Budget and Intra-Event Sediment Dynamics of a Small Glaciated Mountainous Catchment in the Northern Caucasus. J. Soils Sediments, 2020, vol. 20, pp. 3266–3281. https://doi.org/10.1007/s11368-020-02633-z
49. Tsyplenkov A., Golosov V., Belyakova P. How did the suspended sediment load change in the north Caucasus during the Anthropocene? Hydrol. Process., 2021, vol. 35, no. 10, art. 14403. https://doi.org/10/1002/hyp.1403
50. Tsyplenkov A., Vanmaercke M., Collins A.L., et al. Elucidating suspended sediment dynamics in a glacierized catchment after an exceptional erosion event: The Djankuat catchment, Caucasus Mountains, Russia. Catena, 2021, vol. 203, art. 105285. https://doi.org/10.1016/j.catena.2021.105285
51. Turowski J.M., Rickenmann D., Dadson S.J. The partitioning of the total sediment load of a river into suspended load and bedload: a review of empirical data. Sedimentology, 2010, vol. 57, pp. 1126–1146. https://doi.org/10.1111/j.1365-3091.2009.01140.x
52. Vanacker V., von Blanckenburg F., Govers G., et al. Transient River Response, Captured by Channel Steepness and Its Concavity. Geomorphology, 2015, vol. 228, pp. 234–243. https://doi.org/10.1016/j.geomorph.2014.09.013
53. Vanmaercke M., Poesen J., Verstraeten G., et al. Sediment yield in Europe: Spatial patterns and scale dependency. Geomorphology, 2011, vol. 130, pp. 142–161. https://doi.org/10.1016/j.geomorph.2011.03.010
54. Vezzoli G., Garzanti E., Limonta M., et al. Focused Erosion at the Core of the Greater Caucasus: Sediment Generation and Dispersal from Mt. Elbrus to the Caspian Sea. Earth Sci. Rev., 2020, vol. 200, art. 102987. https://doi.org/10.1016/j.earscirev.2019.102987
55. Volodicheva N. The Caucasus. In The Physical Geography of Northern Eurasia. Shahgedanova M., Ed. Oxford: Oxford Univ. Press, 2002, pp. 350–376.
56. Vorosmarty C.J., Meybeck M., Fekete B., et al. Anthropogenic sediment retention: major global impact from registered river impoundments. Glob. Planet. Change, 2003, vol. 39, pp. 169–190. https://doi.org/10.1016/S0921-8181(03)00023-7
57. Wiesmair M., Otte A., Waldhardt R. Relationships between plant diversity, vegetation cover, and site conditions: implications for grassland conservation in the Greater Caucasus. Biodivers. Conserv., 2007, vol. 26, pp. 273– 291. https://doi.org/10.1007/s10531-016-1240-5
58. Wobus C., Whipple. K.X., Kirby E., et al. Tectonics from Topography: Procedures, Promise, and Pitfalls. GSA Special Papers, 2006, vol. 398, pp. 55–74.
59. Yamazaki D., Ikeshima D., Sosa J., et al. MERIT Hydro: A High-Resolution Global Hydrography Map Based on Latest Topography Dataset. Water Resour. Res., 2019, vol. 55, pp. 5053–5073. https://doi.org/10/1029/2019WR024873
60. Zalasiewicz J., Waters C.N., Williams M., et al. When did the Anthropocene begin? A mid-twentieth century boundary level is stratigraphically optimal: The Quaternary System and its formal subdivision. Quat. Int., 2015, vol. 383, pp. 196–203. https://doi.org/10.1016/j.quaint.2014.11.045
Review
For citations:
Golosov V.N., Tsyplenkov A.S. Sediment Yield in the Caucasus Mountains and Its Trends as a Reflection of Climate Change and Anthropogenic Impact. Izvestiya Rossiiskoi Akademii Nauk. Seriya Geograficheskaya. 2023;87(7):1050-1064. (In Russ.) https://doi.org/10.31857/S2587556623070075. EDN: HEUABX