Сatastrophic Phenomena in the last Decades Associated with the Degradation of Glaciers and Permafrost in Mountains (Analytical Review)
https://doi.org/10.31857/S2587556623070051
EDN: HGTATM
Abstract
Based on the analysis of Earth remote sensing materials and publications, data on catastrophic manifestations of dangerous natural processes associated with the degradation of glaciers and mountain permafrost caused by climate change are presented. Amid accelerated rates of glacier degradation, catastrophic manifestations of their dynamics are more often observed—detachment of glaciers and ice avalanches, ice-rock avalanches. In the Central and Western Caucasus, there is an intensification of rock and ice-rock avalanches, the maximum of which had a runout distance of up to 11.3 km (on Mount Kazbek in 2014), with an affected area of 3.2 km2 (in the Aksaut gorge in 2022). In 2021–2022, there were catastrophic glaciers detachments and icestone avalanches on the Marmolada mountain in the Alps, in the Juuku gorge in the Tien Shan and in the Ronti Gad River valley in the Himalayas. The Sedongpu glacier detachment in Eastern Tibet in 2018 had the maximum volume (130 mln m3). Melting of ice in moraine pedestals (massifs of mountain permafrost) leads to the formation of debris f lows of gigantic runout volumes, reaching 300 mln m3 or more. The blocking of underground drain channels inside rock glaciers is associated with the accumulation of water in long-empty basins and the formation of lakes with their subsequent catastrophic outburst. The processes occurring in glaciers and moraine complexes often have an inherited and interdependent nature and a long period of preparation, which allows on the basis of constant monitoring using satellite images to identify prognostic signs and warn in advance of the imminent danger.
Keywords
About the Authors
M. Yu. BekkievRussian Federation
Nalchik
M. D. Dokukin
Russian Federation
Nalchik
R. Kh. Kalov
Russian Federation
Nalchik
References
1. An B., Wang W., Yang W., et al. Process, mechanisms, and early warning of glacier collapse-induced river blocking disasters in the Yarlung Tsangpo Grand Canyon, southeastern Tibetian Plateau. Sci. Total Environ., 2022, vol. 816, no. 3, art. 151652. https://doi.org/10.1016/j.scitotenv.2021.151652
2. Assessment of Glacier and Permafrost Hazards in Mountain Regions. Technical Guidance Document. Allen S., Frey H., Huggel C. et al., Eds. Zurich, Lima, 2017. 72 p. http://doi.org/10.13140/RG.2.2.26332.90245
3. Bekkiev M.Yu., Dokukin M.D., Kalov R.Kh. On the assessment of the danger of glacier detachments and collapses. In Sovremennye problemy geologii, geofiziki i geoekologii Severnogo Kavkaza (GEOKAVKAZ 2021). Nomer 11 [Modern Problems of Geology, Geophysics and Geoecology of the North Caucasus (GEOKAVKAZ 2021). No. 11]. Moscow: IIET RAN, 2021a, pp. 187– 192. (In Russ.).
4. Bekkiev M.Yu., Dokukin M.D., Kalov R.Kh., Fedchenko L.M. Formation of debris flow cuts in the areas of lateral moraines of valley glaciers. Vestn. Vladikavkaz Nauch. Ts., 2021b, vol. 21, no. 3, pp. 48–55. (In Russ.). https://doi.org/10.46698/m6092-4144-2648-e
5. Bekkiev M.Yu., Dokukin M.D., Kalov R.Kh., Shagin S.I. Extreme debris flow processes on moraine pedestals in 2018–2021 (based on remote sensing data). GeoRisk, 2021c, vol. 15, no. 3, pp. 40–48. (In Russ.). https://doi.org/10.25296/1997-8669-2021-15-3-40-48
6. Bekkiev M.Yu., Dokukin M.D., Kalov R.Kh., Shagin S.I. About the glacier detachments in 2021-2022. In Rezul’taty 20 let izucheniya katastrofy mirovogo masshtaba v Genaldonskom ushchel’e (skhod lednika Kolka) [Results of 20 Years of Studying the Global Catastrophe in the Genaldon Gorge (the Detachment of the Kolka Glacier)]. Vladikavkaz: Sev.-Kavkaz Gorn.-Metal. Inst. (Gos. Tekhn. Univ.) Publ., 2022, pp. 155–163. (In Russ.).
7. Berthier E., Gascoin S. Estimation of Marmolada glacier collapse volume using Pleiades imagery. CESBIO multitemp. Séries Temporelles, 2022a. Available at: https://labo.obs-mip.fr/multitemp/estimation-ofmarmolada-glacier-collapse-volume-using-pleiadesimagery/ (accessed: 07.04.2023).
8. Berthier E., Gascoin S. Kyrgyzstan glacier collapse. New Pleiades and SPOT7 images tell us more… CESBIO multitemp. Séries Temporelles, 2022b. Available at: https://labo.obs-mip.fr/multitemp/kyrgyzstan-infamous-avalanche-new-pleiades-and-spot7-imagestell-us-more/ (accessed: 07.04.2023).
9. Bessette-Kirton E.K., Coe J.A., Zhou W. Using stereo satellite imagery to account for ablation, entrainment, and compaction in volume calculations for rock avalanches on glaciers: Application to the 2016 Lamplugh rock avalanche in Glacier Bay National Park, Alaska. J. Geophys. Res. Earth Surf., 2018, no. 123, pp. 622–641. https://doi.org/10.1002/2017JF004512
10. Bessette-Kirton E.K., Coe J.A. A 36-year record of rock avalanches in the Saint Elias Mountains of Alaska, with implications for future hazards. Front. Earth Sci., 2020, vol. 8, art. 293. http://doi.org/10.3389/feart.2020.00293
11. Bodin X., Krysiecki J.-M., Iribarren P. Recent collapse of rock glaciers: two study cases in the Alps and in the Andes. In Proceedings of the 12th Congress INTERPRAEVENT, Grenoble, France, 23–26 April 2012. Grenoble, 2012, pp. 2–3.
12. Chernomorets S.S., Petrakov D.A., Aleynikov A.A., Bekkiev M.Y., Viskhadzhieva K.S., Dokukin M.D., Kalov R.K., Kidyaeva V.M., Krylenko V.V., Krylenko I.V., Krylenko I.N., Rets E.P., Savernyuk E.A., Smirnov A.M. The outburst of Bashkara glacier lake (Central Caucasus, Russia) on September 1, 2017. Earth’s Cryosph., 2018, vol. 22, no. 2, pp. 61–70.
13. Dokukin M.D. Rock glaciers of the Central Caucasus as places of formation of debris flows. Tr. VGI, 1987, no. 70, pp. 33–42. (In Russ.).
14. Dokukin M.D., Savernyuk E.A. O vozmozhnosti otsenki ugrozy kamennykh lavin (na primere doliny r. Hargabahk, Chechenskaya Respublika) [On the Possibility of Assessing the Threat of Rock Avalanches (on the Example of the Khargabakhk River Valley, Chechen Republic]. Mire Nauch. Otkryt., 2010, vol. 9, no. 3–4, pp. 146–151. (In Russ.).
15. Dokukin M.D. Outstanding Lake outburst in 2012-2013 (based on remote sensing materials). In Sbornik trudov Severo-Kavkazskogo instituta po proektirovaniyu vodokhozyaistvennogo i meliorativnogo stroitel’stva. Vyp. 20 [Collection of Works of the North Caucasus Institute for the Design of Water Management and Reclamation Construction. Vol. 20]. Pyatigorsk: OAO “Sevkavgiprovodhoz”, 2014, pp. 82–97. (In Russ.).
16. Dokukin M.D., Chernomorets S.S., Savernyuk E.A. Moraine pedestals – initiation zones of catastrophic glacial debris flows. In Selevye potoki: katastrofy, risk, prognoz, zashchita [Debris Flows: Risks, Forecast, Protection]. Irkutsk: Inst. Geogr. im. V.B. Sochava SO RAN Publ., 2016, pp. 67–71. (In Russ.).
17. Dokukin M.D., Bekkiev M.Yu., Kalov R.Kh., Savernyuk E.A., Chernomorets S.S. Signs of preparation of catastrophic glacier detachments (analysis of multitemporal space information). In Opasnye prirodnye i tekhnogennye protsessy v gornykh regionakh: modeli, sistemy, tekhnologii. Kollektivnaya monografiya [Dangerous Natural and Technogenic Processes in Mountain Regions: Models, Systems, Technologies. Collective Work]. Nikolaev A., Zaalishvili V., Eds. Vladikavkaz: GFI VNTS RAN, 2019a, pp. 522–528. (In Russ.).
18. Dokukin M.D., Chernomorets S.S., Savernyuk E.A., Zaporozhchenko E.V., Bobov R.A., Pirmamadov U.R. Barsem debris flow disaster in the Pamirs in 2015 and its analogues in the Central Caucasus. GeoRisk, 2019b, vol. 13, no. 1, pp. 26–36. (In Russ.). https://doi.org/10.25296/1997-8669-2019-13-1-26-36
19. Dokukin M.D., Bekkiev M.Yu., Kalov R.Kh., Savernyuk E.A., Chernomorets S.S. Rock glaciers as origination sites of the catastrophic debris flows. GeoRisk, 2020a, vol. 14, no. 2, pp. 52–65. (In Russ.). https://doi.org/10.25296/1997-8669-2020-14-2-52-65
20. Dokukin M.D., Bekkiev M.Yu., Kalov R.Kh., Savernyuk E.A., Chernomorets S.S., Bogachenko E.M. Glaciogeomorphological conditions for the Gerkhozhan-Su River debris flow formation (Central Caucasus). In Selevye potoki: katastrofy, risk, prognoz, zashchita. Trudy 6-i Mezhdunarodnoi konferentsii (Dushanbe–KHorog, Tadzhikistan). Tom 1 [Debris Flows: Disasters, Risk, Forecast, Protection. Proceedings of the 6th International Conference (Dushanbe–Khorog, Tajikistan). Vol. 1]. Dushanbe: Promotion Publ., 2020b, pp. 388– 404. (In Russ.).
21. Dokukin M.D., Bekkiev M.Yu., Kalov R.Kh., Chernomorets S.S., Savernyuk E.A. Activation of rock avalanches in the Central Caucasus and their impact on the dynamics of glaciers and debris flows. Sneg i Led, 2020c, vol. 60, no. 3, pp. 361–378. (In Russ.). https://doi.org/10.31857/S2076673420030045
22. Faillettaz J., Sornette D., Funk M. Numerical modeling of a gravity-driven instability of a cold hanging glacier: reanalysis of the 1895 break-off of Altelsgletscher, Switzerland. J. Glaciol., 2011, vol. 205, no. 57, pp. 817–831. http://doi.org/10.3189/002214311798043852
23. Gorbunov A.P., Gorbunova I.A. Geografiya kamennykh gletcherov i ikh analogov v Evrazii [Geography of Rock Glaciers and Their Analogues in Eurasia]. Almaty: Inst. Geogr., MON RK, 2013. 184 p.
24. Heim A. Die Gletscherlawine an der Altels am 11. September 1895. Zürich: Zürcher und Fürrer, 1895.
25. Jacquemart M., Welty E., Leopold M., Loso M., Lajoie L., Tiampo K. Geomorphic and sedimentary signatures of catastrophic glacier detachments: A first assessment from Flat Creek, Alaska. Geomorphology, 2022, no. 414, art. 108376. https://doi.org/10.1016/j.geomorph.2022.108376
26. Kääb A., Jacquemart M., Gilber A., Leinss S., Girod L., Huggel Ch., Falaschi D., Ugalde F., Petrakov D., Chernomorets S., Dokukin M., Paul F., Gascoin S., Berthier E., Kargel J. Sudden large-volume detachments of low-angle mountain glaciers – more frequent than thought? Cryosph., 2021, vol. 15, no. 4, pp. 1751– 1785. https://doi.org/10.5194/tc-15-1751-2021
27. Kääb A., Girod L. Brief communication: Rapid ~335 × × 106m3 bed erosion after detachment of the Sedongpu Glacier (Tibet). Cryosph., 2023, vol. 17, no. 6, pp. 2533– 2541. https://doi.org/10.5194/tc-17-2533-2023
28. Khromova T.Y., Nosenko G.A., Glazovsky A.F., Muraviev A.Y., Nikitin S.A., Lavrentiev I.I. New Inventory of the Russian glaciers based on satellite data (2016–2019). Sneg I Led, 2021, vol. 61, no. 3, pp. 341–358. (In Russ.). http://doi.org/10.31857/S2076673421030093
29. Kovalev P.V. Geomorfologicheskie issledovaniya v Tsentral’nom Kavkaze (bassein r. Baksan) [Geomorphological Studies in the Central Caucasus (Baksan River Basin)]. Kharkiv: Kharkiv Univ. Publ., 1957. 162 p.
30. Kumar A., Bhambri R., Tiwari S.K., Verma A., Gupta A.K., Kawishwar P. Evolution of debris flow and moraine failure in the Gangotri Glacier region, Garhwal Himalaya: Hydro-geomorphological aspects. Geomorphology, 2019, vol. 333, pp. 152–166. https://doi.org/10.1016/j.geomorph.2019.02.015
31. Leinss S., Bernardini E., Jacquemart M., Dokukin M. Glacier detachments and rock-ice avalanches in the Petra Pervogo range, Tajikistan (1973–2019). Nat. Hazards Earth Syst. Sci., 2021, vol. 21, pp. 1409–1429. https://doi.org/10.5194/nhess-21-1409-2021
32. Li W., Zhao B., Xu Q., Scaringi G., Lu H., Huang R. More frequent glacier-rock avalanches in Sedongpu gully are blocking the Yarlung Zangbo River in eastern Tibet. Landslides, 2022, vol. 19, pp. 589–601. https://doi.org/10.1007/s10346-021-01798-z
33. Lugon R., Stoffel M. Rock-glacier dynamics and magnitude–frequency relations of debris flows in a high-elevation watershed: Ritigraben, Swiss Alps. Glob. Planet. Change, 2010, vol. 73, pp. 202–210. http://doi.org/10.1016/j.gloplacha.2010.06.004
34. Makarov S.A., Cherkashina A.A., Atutova Zh.V., Bardash A.V., Voropaj N.N., Kichigina N.V., Mutin B.F., Osipova O.P., Uhova N.N. Katastroficheskie selevye potoki, proizoshedshie v poselke Arshan Tunkinskogo raiona Respubliki Buryatiya 28 iyunya 2014 g. [Catastrophic Debris Flow, Occurred in the Village of Arshan, Tunkinsky District, Republic of Buryatia in June, 28 2014]. Irkutsk: Inst. Geogr. im. V.B. Sochava So RAN Publ., 2014. 111 p.
35. Mani P.A., Allen S.K., Evans S.G., Kargel J.S., Mergili M., Petrakov D., Stoffel M. Geomorphic process chains in high-mountain regions – A review and classification approach for natural hazards assessment. ESS Open Archive, 2022. https://doi.org/10.1002/essoar.10512593.1
36. Rasul G., Molden D. The Global Social and Economic Consequences of Mountain Cryospheric Change. Front. Environ. Sci., 2019, vol. 7, art. 91. http://doi.org/10.3389/fenvs.2019.00091
37. Savernyuk E.A., Dokukin M.D., Chernomorec S.S., Krylenko I.V., Yudina V.A. About the rock avalanche 01.01.2022 in the Aksaut River valley and other rock collapses in the Caucasus from 1957 to 2022. In Rezul’taty 20 let izucheniya katastrofy mirovogo masshtaba v Genaldonskom ushchel’e (skhod lednika Kolka) [The Results of 20 Years of Studying the Global Catastrophe in the Genaldon Gorge (the Detachment of the Kolka Glacier)]. Vladikavkaz: Sev.-Kavkaz. Gorn.-Metal. Inst. (Gos. Tekhn. Univ.), 2022, pp. 50–68. (In Russ.).
38. Seinova I.B., Mezenina T.N. Rock glaciers – centers of the origin of debris flows in the basin of the Chegem River. Mater. Glyatsiolog. Iss., 1987, no. 60, pp. 179–183. (In Russ.).
39. Shugar D.H., Jacquemart M., Shean D. et al. A massive rock and ice avalanche caused the 2021 disaster at Chamoli, Indian Himalaya. Science, 2021, vol. 373, no. 6552, pp. 300–306. http://doi.org/10.1126/science.abh4455
40. Tukeev O.V. Selevye yavleniya Pamira: katastrofy, zakonomernosti, prognoz [Debris Flow Phenomena of the Pamirs: Catastrophes, Patterns, Forecast]. Moscow, 2002. 176 p.
41. Vinogradov Yu.B. Glyatsial’nye proryvnye pavodki i selevye potoki [Glacial Breakthrough Floods and Debris Flows]. Leningrad: Gidrometeoizdat, 1977. 155 p.
42. Wagner T., Brodacz A., Krainer K., Winkler G. Active rock glaciers as shallow groundwater reservoirs, Austrian Alps. Grundwasser – Zeitschrift der Fachsektion Hydrogeologie, 2020, vol. 25, pp. 215–230. https://doi.org/10.1007/s00767-020-00455-x
43. Zaalishvili V.B. Reconstruction of the process of the collapse of the Kolka glacier in the Karmadon gorge on September 20, 2002. In Sovremennye problemy geologii, geofiziki i geoekologii Severnogo Kavkaza [Modern Problems of Geology, Geophysics and Geoecology of the North Caucasus]. Moscow: IIET RAN, 2020, pp. 90–102. (In Russ.).
44. Zhao C., Yang W., Westoby M., An B., Wu G., Wang W., Wang Z., Wang Y., Dunning S. Brief communication: A ~50 Mm3 ice-rock avalanche on 22 March 2021 in the Sedongpu valley, southeastern Tibetan Plateau. Cryosph., 2022, vol. 16, no. 4, pp. 1333–1340. https://doi.org/10.5194/tc-16-1333-2022
Review
For citations:
Bekkiev M.Yu., Dokukin M.D., Kalov R.Kh. Сatastrophic Phenomena in the last Decades Associated with the Degradation of Glaciers and Permafrost in Mountains (Analytical Review). Izvestiya Rossiiskoi Akademii Nauk. Seriya Geograficheskaya. 2023;87(7):1065-1078. (In Russ.) https://doi.org/10.31857/S2587556623070051. EDN: HGTATM