Preview

Geographical Study of the 6G Wireless Communications: Outlines of Future Directions

https://doi.org/10.31857/S2587556623080058

EDN: HUJGKJ

Abstract

According to existing forecasts, after 2030, an intelligent, three-dimensional, ultra-dense, integrated, terabyte, terahertz, tactile, and touch-scanning wireless communication system of the sixth generation (6G) will be deployed. Spatial features will be very significant for it, which necessitates geographical research. Therefore, an attempt has been made to determine the future directions of the geographical study of 6G networks based on a comparison of network parameters with the existing experience of knowing the spatial and temporal features of the deployment of information and communication networks. The main attention is paid to the infrastructure and the telecommunication services. The infrastructure includes cloud data centers, stationary and mobile base stations, subscriber and robotic devices, radiating surfaces, sensors, and other network elements. Future services will be represented by ubiquitously connected artificial intelligence, sensory scanning of the environment, holographic telepresence, augmented reality, tactile communication, three-dimensional positioning, and other services. It is proposed to develop geographical research in the following areas: deployment of a spatially distributed network; info-communication-network development of space; identification of “smart” agglomerations and regions; spatial diffusion of telecommunications services; center-peripheral digital inequality; and artificial intelligence specialization of regions. Applied work is proposed to be carried out on the geographical expertise of network projects, optimization of the linear-node structure and recommendations of the 7G network parameters. For each of the nine directions, general characteristics and possible division into particular directions are given. Within the framework of the selected directions, the proposed periodization of the main research tasks is shown from the development of a methodology for geographical cognition of 6G networks in the 2020s to obtaining empirical results in the 2030s and their subsequent discussion for the transition to 7G in the 2040s.

 

 

 

About the Author

V. I. Blanutsa
Sochava Institute of Geography, Siberian Branch of the Russian Academy of Sciences
Russian Federation

Irkutsk



References

1. Agarwal A., Mohanta C., Misra G. Principle of 6G wireless networks: Vision, challenges and applications. J. Inf. Technol. Digital World, 2021, vol. 3, no. 4, pp. 243–258. https://doi.org/10.36548/jitdw.2021.4.001

2. Akyildiz I.F., Guo H. Holographic-type communication: A new challenge for the next decade. ITU J-FET, 2022, vol. 3, no. 2, pp. 421–442. https://doi.org/10.52953/YRLL3571

3. Amoore L. Cloud geographies: Computing, data, sovereignty. Prog. Hum. Geogr., 2018, vol. 42, no. 1, pp. 4– 24. https://doi.org/10.1177/0309132516662147

4. Atkins E. Tracing the “cloud”: Emergent political geographies of global data centers. Polit. Geogr., 2021, vol. 86, article e102306. https://doi.org/10.1016/j.polgeo.2020.102306

5. Barroso J.L.G., Martínez J.P. The geography of the digital divide: Broadband deployment in the Community of Madrid. Univers. Access. Inf. Soc., 2004, vol. 3, no. 3, pp. 264–271. https://doi.org/10.1007/s10209-004-0103-0

6. Bassoli R., Boche H., Deppe C., Ferrara R., Fitzek F.H.P., Janssen G., Saeedinaeeni S. Quantum Communication Networks. Cham: Springer, 2021. 229 p.

7. Blanutsa V.I. Razvertyvanie informatsionno-kommunikatsionnoi seti kak geograficheskii protsess (na primere stanovleniya setevoi struktury sibirskoi pochty) [Deployment of an Information and Communication Network as a Geographic Process (On Example of the Network Structure Formation of the Siberian Post)]. Moscow: INFRA-M Publ., 2016. 246 p.

8. Blanutsa V.I. Informatsionno-setevaya geografiya [Information and Network Geography]. Moscow: INFRA-M Publ., 2019. 243 p.

9. Blanutsa V.I. Geograficheskaya ekspertiza strategii ekonomicheskogo razvitiya Rossii [Geographical Expertise of Russia’s Economic Development Strategies]. Moscow: INFRA-M Publ., 2021. 198 p.

10. Blanutsa V.I. Obshchestvennaya geografiya: tsifrovye prioritety XXI veka [Human Geography: Digital Priorities of the 21st Century]. Moscow: INFRA-M Publ., 2022. 252 p.

11. Calabrese A. The periphery in the center: The information age and the “good life” in rural America. Int. Commun. Gaz., 1991, vol. 48, no. 2, pp. 195–128. https://doi.org/10.1177/001654929104800203

12. Chiwhane J.A., Yadav L.N., Rakhade V.M. A review of future mobile technologies and 4G, 5G, 6G, 7G. Int. J. Adv. Res. Comput. Commun. Eng., 2022, vol. 11, no. 12, pp. 84–90. https://doi.org/10.17148/IJARCCE.2022.111215

13. Dziembała M., Talar S. The role of ICT in smart specialization of EU regions. J. Bus. Econ. Manag., 2021, vol. 22, no. 6, pp. 1512–1530. https://doi.org/10.3846/jbem.2021.15324

14. Fard A. Cloudy landscapes: On the extended geography smart urbanism. Telemat. Inform., 2020, vol. 55, article e101450. https://doi.org/10.1016/j.tele.2020.101450

15. Flaherty E., Sturm T., Farries E. The conspiracy of Covid19 and 5G: Spatial analysis fallacies in the age of data democratization. Soc. Sci. Med., 2022, vol. 293, article e114546. https://doi.org/10.1016/j.socscimed.2021.114546

16. Gerasimov I.P. Sovetskaya konstruktivnaya geografiya: zadachi, podkhody, rezul’taty [Soviet Constructive Geography: Tasks, Approaches, Results]. Moscow: Nauka Publ., 1976. 208 p.

17. Gritsai O.V., Ioffe G.V., Treivish A.I. Tsentr i periferiya v regional’nom razvitii [Center and Periphery in Regional Development]. Moscow: Nauka Publ., 1991. 168 p.

18. Grujić N., Brdar S., Osinga S., Hofstede G.J., Athanasiadis I.N., Pljakić M., Obrenović N., Govedarica M., Crnojević V. Combining telecom data with heterogeneous data sources for traffic and emission assessments – An agent-based approach. Int. J. Geoinf., 2022, vol. 11, no. 7, article e366. https://doi.org/10.3390/ijgi11070366

19. Hagerstrand T. Innovation Diffusion as a Spatial Process. Chicago: The University of Chicago, 1967. 350 p.

20. Islam M.M., Ramezani F., Lu H.Y., Naderpour M. Optimal placement of applications in the fog environment: A systematic literature review. J. Parallel Distrib. Comput., 2023, vol. 174, pp. 46–69. https://doi.org/10.1016/j.jpdc.2022.12.001

21. Kellerman A. Telecommunications and the geography of metropolitan areas. Prog. Hum. Geogr., 1984, vol. 8, no. 2, pp. 222–246. https://doi.org/10.1177/030913258400800203

22. Kim H., O’Kelly M.E. Reliable p-hub location problems in telecommunication networks. Geogr. Anal., 2009, vol. 41, no. 3, pp. 283–306. https://doi.org/10.1111/j.1538-4632.2009.00755.x

23. Kosmachev K.P. Pionernoe osvoenie taigi (ekonomikogeograficheskie problemy) [Pioneer Development of the Taiga (Economic and Geographical Problems)]. Novosibirsk: Nauka Publ., 1974. 144 p.

24. Kosmachev K.P. Geograficheskaya ekspertiza (metodologicheskie aspekty) [Geographical Expertise (Methodological Aspects)]. Novosibirsk: Nauka Publ., 1981. 109 p.

25. Kourtit K., Nijkamp P. Smart cities in smart space: A regional science perspective. Scienze Regionali, 2018, vol. 17, no. 1, pp. 105–114.

26. Li M., Gao S., Lu F., Liu K., Zhang H., Tu W. Prediction of human activity intensity using the interactions in physical and social spaces through graph convolutional networks. Int. J. Geogr. Inf. Sci., 2021, vol. 35, no. 12, pp. 2489–2516. https://doi.org/10.1080/13658816.2021.1912347

27. Lu Y., Zheng X. 6G: A survey on technologies, scenarios, challenges, and the related issues. J. Ind. Inf. Integr., 2020, vol. 19, article e100158. https://doi.org/10.1016/j.jii.2020.100158

28. Malecki E.J. The economic geography of the internet’s infrastructure. Econ. Geogr., 2002, vol. 78, no. 4, pp. 399– 424. https://doi.org/10.1111/j.1944-8287.2002.tb00193.x

29. Mehta P.L., Kumar A., Mohammad B., Prasad R. A technological and business perspective on connected drones for 6G and beyond mobile wireless communications. Wirel. Pers. Commun., 2022, vol. 127, pp. 2605– 2624. https://doi.org/10.1007/s11277-022-09887-5

30. Morandi C., Rolando A., di Vita S. From Smart City to Smart Region: Digital Services for an Internet of Places. Milan: Springer-Verlag, 2016. 103 p.

31. Navio-Marco J., Rodrigo-Moya B., Gerli P. The rising importance of the “Smart territory” concept: Definition and implications. Land Use Policy, 2020, vol. 99, no. 1, article e105003. https://doi.org/10.1016/j.landusepol.2020.105003

32. Nikulnikov Yu.S. Assessment of economic development of the territory – analysis, new principles of construction of the indicator. In Doklady Instituta geografii Sibiri i Dal’nego Vostoka. Vyp. 50 [Reports of the Institute of Geography of Siberia and the Far East. Vol. 50]. Irkutsk, 1976, pp. 27–36. (In Russ.).

33. Oughton E.J., Frias Z. The cost, coverage and rollout implications of 5G infrastructure in Britain. Telecommun. Policy, 2018, vol. 42, no. 8, pp. 636–652. https://doi.org/10.1016/j.telpol.2017.07.009

34. Oughton E.J., Russell T. The importance of spatio-temporal infrastructure assessment: Evidence for 5G from the Oxford-Cambridge arc. Comput. Environ. Urban Syst., 2020, vol. 83, article e101515. https://doi.org/10.1016/j.compenvurbsys.2020.101515

35. Saunavaara J., Salminen M. Geography of the global submarine fiber-optic cable network: The case for Arctic Ocean solutions. Geogr. Rev., 2023, vol. 113, no. 1, pp. 1–19. https://doi.org/10.1080/00167428.2020.1773266

36. Sawada M., Cossette D., Wellar B., Kurt T. Analysis of the urban/rural broadband divide in Canada: Using GIS in planning terrestrial wireless deployment. Gov. Inf. Q., 2006, vol. 23, no. 3–4, pp. 454–479. https://doi.org/10.1016/j.giq.2006.08.003

37. Shoewu O., Akinyemi L.A., Ayangbekun O.J. Insights into the development trends in 7G mobile wireless networks. J. Adv. Eng. Technol., 2020, vol. 8, no. 1, pp. 1–4. https://doi.org/10.5281/zenodo.3930583

38. Stewart J., Nickerson C. Costs and benefits of 5G geographical coverage in Europe. Cambridge: Analysis Mason Ltd., 2021. 20 p.

39. Tarkhov S.A. Evolyutsionnaya morfologiya transportnykh setei [Evolutionary Morphology of Transport Networks]. Smolensk; Moscow: Universum Publ., 2005. 384 p.

40. van Dijk J. The Digital Divide. Cambridge: Polity Press, 2020. 208 p.

41. Wenzlhuemer R. The dematerialization of telecommunication: Communication centers and peripheries in Europe and the world, 1850–1920. J. Glob. Hist., 2007, vol. 2, no. 3, pp. 345–372. https://doi.org/10.1017/S174002280700232X

42. Werner P.A., Porczek M. Spatial patterns of development of mobile technologies for 5G networks. In Computational Science and Its Applications – ICCSA 2019. Cham: Springer, 2019, pp. 448–459. https://doi.org/10.1007/978-3-030-24302-9_32

43. Ye N., Yu J., Wang A., Zhang R. Help from space: Grantfree massive access for satellite-based IoT in the 6G era. Digit. Commun. Netw., 2022, vol. 8, no. 2, pp. 215–224. https://doi.org/10.1016/j.dcan.2021.07.008

44. Zhu Y. Tactile communication: Making communication technology warmer and more emotional. In Proceedings of the 5th International Conference on Information Science and Systems. Beijing: Association for Computing Machinery, 2022, pp. 43–48. https://doi.org/10.1145/3561877.3561884

45. Zong B., Fan C., Wang X., Duan X., Wang B., Wang J. 6G technologies: Key drivers, core requirements, system architectures, and enabling technologies. IEEE Veh. Technol. Mag., 2019, vol. 14, no. 3, pp. 18–27. https://doi.org/10.1109/mvt.2019.2921398


Review

For citations:


Blanutsa V.I. Geographical Study of the 6G Wireless Communications: Outlines of Future Directions. Izvestiya Rossiiskoi Akademii Nauk. Seriya Geograficheskaya. 2023;87(8):1131-1142. (In Russ.) https://doi.org/10.31857/S2587556623080058. EDN: HUJGKJ

Views: 395


ISSN 2587-5566 (Print)
ISSN 2658-6975 (Online)