Preview

Izvestiya Rossiiskoi Akademii Nauk. Seriya Geograficheskaya

Advanced search

Geochemistry of Spring Water of Mzymta and Sochi River Basins, Southern Slope of the Caucasus Ridge

https://doi.org/10.31857/S2587556623080101

EDN: HRSNJB

Abstract

The chemical composition of the waters of 31 springs located in the basins of the Mzymta and Sochi rivers on the southern slope of the Caucasus Range was studied. Both water-bearing fractured carbonate rocks and water-resistant mudstones and igneous rocks are developed here. In addition, the region is characterized by the development of mineralization zones and deposits of thermal hydrogen sulfide waters. Four types of waters have been identified: I) hydrocarbonate calcium, II) hydrocarbonate-sulfate calcium-magnesium, III) hydrocarbonate-sulfate calcium-sodium, IV) hydrocarbonate-chloride-sulfate calcium waters. Due to the geochemical features of regional rocks, all types of waters are characterized by high contents of Se and rare earth elements (REE) and low concentrations of Tl, Zr, Th, and Fe. The first type of waters is associated with fractured carbonate rocks, and due to their good solubility and water permeability, it differs from other types of waters by increased concentrations of Se and REE by factors of 2.3 and 2.6, respectively. The second type, distributed mainly in argillites, is distinguished by relatively low contents of Se, REE and other elements, which is due to the lower water permeability and solubility of argillites compared to carbonate rocks. The third type is characterized by the additional presence of excess elements Ba, Li, Rb and B in the composition, which is associated with the influence of a deposit of hydrothermal mineral waters. Igneous rocks, being the least permeable and less rich in chemical elements than mudstones, influence the formation of groundwater with the lowest concentrations of elements. The low permeability of igneous rocks is confirmed by the analysis performed using the hydrogeochemical Gibbs diagram, indicating that the precipitation factor is superimposed on the formation of these waters. REE for all types of waters are characterized by similar fractionation inherited from the rocks of the region (medium REE > heavy REE > light REE). The total amount of rare earth elements and their fractionation patterns can be used as a reliable criterion for the interpretation and typification of fresh groundwater.

 

About the Authors

P. S. Lesnikova
Federal Research Centre the Subtropical Scientific Centre of the Russian Academy of Sciences
Russian Federation

Sochi



L. V. Zakharikhina
Federal Research Centre the Subtropical Scientific Centre of the Russian Academy of Sciences
Russian Federation

Sochi



Yu. S. Litvinenko
EcoGeoLit (LLC)
Russian Federation

Moscow



S. G. Shevelev
Caucasian State Biosphere Natural Reserve named after Kh.G. Shaposhnikov
Russian Federation

Sochi



G. V. Vareljyan
Caucasian State Biosphere Natural Reserve named after Kh.G. Shaposhnikov
Russian Federation

Sochi



References

1. Apollaro C., Fuoco I., Bloise L., Calabrese E., Marini L., Vespasiano G., Muto F. Geochemical modeling of water-rock interaction processes in the Pollino National Park. Geofluids, 2021, article 6655711. https://doi.org/10.1155/2021/6655711

2. Belonin M.D., Golubeva V.A., Skublov G.T. Faktornyi analiz v geologii [Factor Analysis in Geology]. Moscow: Nedra Publ., 1982. 269 p.

3. Beyene G., Aberra D., Fufa F. Geochemical quality analysis of groundwater in Jimma Zone, Oromia, National Regional State, Ethiopia. J. Environ. Occup. Sci., 2017, vol. 6, pp. 67–73. https://doi.org/10.5455/jeos.20170815094011

4. Bogush I.A., Cherkashin V.I. Metallogeny of the Jurassic sedimentary complexes of the Caucasus. In Sb. statei po materialam nauch.-prakt. konf., posvyashchennoi pamyati zasluzhennogo geologa RF D.A. Mirzoeva. Trudy Instituta geologii DNC RAN. No. 58 [Collection of Articles on the Materials of the Sci.-Pract. Conf. Dedicated to the Memory of Honored Geologist of the Russian Federation D.A. Mirzoev. Proc. of the Institute of Geology, DNTS RAS. No. 58]. Makhachkala, 2012, pp. 7–13. (In Russ.).

5. Borisov V.I. Reki Kubani [Rivers of Kuban]. Krasnodar: Kuban’ Publ., 2005. 120 p.

6. Chelnokov G.A., Kharitonova N.A., Bragin I.V., Aseeva A.V., Bushkareva K.Yu., Liamina L.A. Geochemistry of rees in the natural waters and the secondary phases from thermal fields of Kamchatka. Vestn. Mosk. Univ., Ser. 4: Geol., 2020, no. 1, pp. 88–96. (In Russ.). https://doi.org/10.33623/0579-9406-2020-1-88-96

7. de Uist R.D. Gidrogeologiya s osnovami gidrologii sushi. Tom 1 [Hydrogeology with the Basics of Land Hydrology. Vol. 1]. Moscow: Mir Publ., 1965. 312 p.

8. Drozhzhina K.V. Peculiarities of natural and climatic conditions of the Mzymta River basin for purposes of recreational activities. Molod. Uchenyi, 2013, no. 5, pp. 196–198. (In Russ.).

9. Embaby A., Razack M., Lecoz M., Porel G. Hydrogeochemical assessment of groundwater in the precambrian rocks, South Eastern Desert, Egypt. J. Water Resource Prot., 2016, vol. 8, no. 3, pp. 293–310. https://doi.org/10.4236/jwarp.2016.83025

10. Gazeev V.M., Gurbanov A.G., Kondrashov I.A. Paleogenic basalt-trachytic formation of west caucasus: geochemical specialization, question of petrogenesis, geodynamic typisation, metallogeny. Geol. Geoph. Yuga Ross., 2018, no. 4, pp. 18–32. (In Russ.). https://doi.org/10.23671/VNC.2018.4.20131

11. Gibbs R. J. Mechanisms controlling world water chemistry. Science, 1970, vol. 170, no. 3962, pp. 1088–1090. https://doi.org/10.1126/science.170.3962.1088

12. Grigor’ev N.A. Average concentrations of chemical elements in rocks of the upper continental crust. Geochem. Int., 2003, vol. 41, no. 7, pp. 711–718.

13. Gromet L.P., Dumek R.F., Haskin L.A., Korotev R.L. The “North American shale composite”: Its composition, major and trace element characteristics. Geochim. Cosmochim. Acta, 1984, vol. 48, pp. 2469–2482. https://doi.org/10.1016/0016-7037(84)90298-9

14. Haskin L.A., Haskin M.A., Frey F.A., Wildman T.R. Relative and absolute terrestrial abundance’s of the rare earths. In Origin and Distribution of the Elements. 1968, pp. 889–912. https://doi.org/10.1016/B978-0-08-012835-1.50074-X

15. Hem J.D. Study and Interpretation of the Chemical Characteristics of Natural Water. Water Supply Paper 2254. Charlottesville: Geological Survey Publ., 1985. 263 p. https://doi.org/10.3133/wsp2254

16. Jie C., Hui Q., Yanyan G., Haike W., Maosheng Z. Insights into hydrological and hydrochemical processes in response to water replenishment for lakes in arid regions. J. Hydrol., 2020, vol. 581, article 124386. https://doi.org/10.1016/j.jhydrol.2019.124386

17. Karelina E.V., Markov V.E., Blokov V.I. The prospects of the Krasnopolyansky district of the city of Sochi for precious metal mineralization. Vestn. RUDN, Ser.: Inzh. Issled., 2017, vol. 18, no. 4, pp. 497–504. (In Russ.).

18. Kharitonova N.A. Carbonic mineral waters of northeast Asia: origin and evolution. Extended Abstract of Dr. Sci. (Geol. and Miner.) Dissertation. Tomsk: Far Eastern Geological Inst., Far Eastern Branch of the Russ. Acad. Sci., 2013. 46 p.

19. Kharitonova N.A., Chelnokov G.A., Bragin I.V., Chudaev O.V., Shand P., Funikova V.V. Major and trace element geochemistry of CO2-rich groundwater in the volcanic aquifer system of the Eastern Sikhote-Alin (Russia). Environ. Earth Sci., 2020, vol. 79, article 55. https://doi.org/10.1007/s12665-019-8697-y

20. Kharitonova N.A., Vakh E.A., Chelnokov G. A., Chudaev O. V., Aleksandrov I. A., Bragin I. V. Ree geochemistry in groundwater of the Sikhote Alin fold region (Russian Far East). Russ. J. Pacific Geol., 2016, vol. 10, pp. 141–154. https://doi.org/10.1134/S1819714016020032

21. Krainov S.R., Ryzhenko B.N., Shvets V.M. Geokhimiya podzemnykh vod: teoreticheskie, prikladnye i ekologicheskie aspekty [Geochemistry of Underground Waters: Theoretical, Applied and Ecological Aspects]. Laverov N.P., Ed. Moscow: CenterLitNefteGas Publ., 2012. 672 p.

22. Kurlov M.G., Sobkevich A.I. Opyt klassifikatsii sibirskikh tselebnykh mineral’nykh vod, soglasno ikh khimicheskomu sostavu [Experience in the Classification Of Siberian Healing Mineral Waters, According to Their Chemical Composition]. Tomsk: Tomskoe gubernskoe otdelenie gosizdatel’stva, 1921. 52 p.

23. Lavrishchev V.A., Pruckij N.I., Semenov V.M. et al. Gosudarstvennaya geologicheskaya karta Rossiiskoi federatsii masshtaba 1 : 200000. Seriya Kavkazskaya. List K-37-V. Izd. 2-e. [State Geological Map of the Russian Federation, Scale 1 : 200,000. Caucasian Series. List K-37-V. 2nd Ed.]. St. Petersburg, 2002.

24. Liang Z., Chen J., Jiang T., Li K., Gao L., Wang Z., Li S., Xie Z. Identification of the dominant hydrogeochemical processes and characterization of potential contaminants in groundwater in Qingyuan, China, by multivariate statistical analysis. RSC Adv., 2018, vol. 8, no. 58, pp. 33243–33255. https://doi.org/10.1039/c8ra06051g

25. Litvinenko Yu.S., Zakharikhina L.V. Geochemistry and radioecology of waters and bottom sediments of the Mzymta River, the Black Sea Coast. Geochem. Int., 2022, vol. 60, pp. 379–394. https://doi.org/10.1134/S0016702922030041

26. Malyshev A.I. Sera v magmaticheskom rudoobrazovanii [Sulfur in Igneous Ore Formation]. Yekaterinburg: Inst. Geol. Geokhimii UrO RAN, 2004. 189 p.

27. Marandi A., Shand P. Groundwater chemistry and the Gibbs diagram. Appl. Geochem., 2018, vol. 97, pp. 209– 2012. https://doi.org/10.1016/j.apgeochem.2018.07.00

28. Ostrovskiy L.A. et al. Metodicheskie osnovy gidrogeologicheskogo raionirovaniya territorii SSSR [Methodological Bases of Hydrogeological Zoning of the Territory of the USSR]. Moscow: Nedra Publ., 1990. 238 p.

29. Ovchinnikov A.M. Conditions for the formation of Matsesta hydrogen sulfide waters. In Tr. Labor. Gidrogeol. Problem AN SSSR. Vyp. 2 [Proceedings of the Lab. of Hydrogeological Problems of the USSR Academy of Sciences. Vol. 2], 1949, 1958 p. (In Russ.).

30. Pavlov A.N. Natural impoverishment of Matsesta mineral waters. Zapiski Gorn. Inst., 1965, vol. 48, no. 2, pp. 92– 97. (In Russ.).

31. Plyusnin A.M., Zamana L.V., Shvartsev S.L., Tokarenko O.G., Chernyavsky M.K. Hydrogeochemical peculiarities of the composition of nitric thermal waters in the baikal rift zone. Geol. Geofiz., 2013, vol. 54, no. 5, pp. 647– 664. (In Russ.).

32. Posokhov E.V. Formirovanie khimicheskogo sostava podzemnykh vod [Formation of Groundwater Chemical Composition]. Leningrad: Gidrometeorol. Publ., 1966. 258 p.

33. Prutskiy N.I., Yubko V.M., Derkacheva M.G. et al. Gosudarstvennaya geologicheskaya karta Rossiiskoi Federatsii. Gidrogeologicheskaya karta i litologicheskaya karta obzora dna akvatorii Chernogorii i Kaspiiskogo morya, masshtab: 1 : 1000000. Seriya Skifskaya. List K-37. Izd. 3-e [State Geological Map of the Russian Federation. Hydrogeological Map and Lithological Map of the Bottom Surfaces of the Black and Caspian Seas, Scale: 1 : 1000000. Scythian Series. List K-37. 3rd ed.]. St. Petersburg, 2011.

34. Sajil Kumar P.J., James E.J. Identification of hydrogeochemical processes in the Coimbatore district, Tamil Nadu, India. Hydrol. Sci. J., 2018, vol. 61, no. 4, pp. 719–731. https://doi.org/10.1080/02626667.2015.1022551

35. Sarikhani R., Ghassemi Dehnavi A., Ahmadnejad Z., Kalantari N. Hydrochemical characteristics and groundwater quality assessment in Bushehr Province, SW Iran. Environ. Earth Sci., 2015, vol. 74, pp. 6265–6281. https://doi.org/10.1007/s12665-015-4651-9

36. Savenko V.S. Biophilicity of chemical elements and its reflection in ocean chemistry. Vestn. Mosk. Univ., Ser. 5: Geogr., 1997, no. 1, pp. 3–7. (In Russ.).

37. Shajedul I., Golam M. Hydro-geochemical evaluation of groundwater for irrigation in the Ganges River basin areas of Bangladesh. Res. Sq., 2021. https://doi.org/10.21203/rs.3.rs-161359/v1

38. Shvartsev S.L. Gidrogeokhimiya zony gipergeneza [Hydrogeochemistry of the Hypergenesis Zone]. Moscow: Nedra Publ., 1998. 365 p.

39. Solovov A.P. Geokhimicheskie metody poiskov mestorozhdenii poleznykh iskopaemykh [Geochemical Methods of Prospecting for Mineral Deposits]. Moscow: Nedra Publ, 1985. 70 p.

40. Taucare M., Daniele L., Viguier B., Vallejos A., Arancibia G. Groundwater resources and recharge processes in the Western Andean Front of Central Chile. Sci. Total Environ., 2020, vol. 722, article 137824. https://doi.org/10.1016/j.scitotenv.2020.137824

41. Vorobyov S.A. Programmnyi paket kompleksnoi obrabotki geologo-geokhimicheskikh dannykh Gold Digger. Dokumentatsiya i opisanie [Software Package for Complex Processing of Geological and Geochemical Data Gold Digger. Documentation and Description]. Moscow: MPR Publ., 50 p.

42. Zakharikhina L.V., Rudev P.V., Paltseva A.V. Chemical composition and morphology of the Mediterranean mussel, Black Sea coast of Russia. Mar. Pollut. Bull., 2022, vol. 179, article 113692. https://doi.org/10.1016/j.marpolbul.2022.113692

43. Zakharikhina L.V., Sharafan M.V. Behavior of rare earth elements in the soil and vegetation cover of the urban landscapes of Sochi. Vestn. KRAUNTS, Ser.: Nauki Zemle, 2021, vol. 50, no. 2, pp. 48–58. (In Russ.). https://doi.org/10.31431/1816-5524-2021-2-50-48-58


Review

For citations:


Lesnikova P.S., Zakharikhina L.V., Litvinenko Yu.S., Shevelev S.G., Vareljyan G.V. Geochemistry of Spring Water of Mzymta and Sochi River Basins, Southern Slope of the Caucasus Ridge. Izvestiya Rossiiskoi Akademii Nauk. Seriya Geograficheskaya. 2023;87(8):1258-1274. (In Russ.) https://doi.org/10.31857/S2587556623080101. EDN: HRSNJB

Views: 370


ISSN 2587-5566 (Print)
ISSN 2658-6975 (Online)