

Geoecological Problems in the Context of Climate Change: Theoretical Analysis and Regional Manifestations
https://doi.org/10.31857/S2587556624030011
EDN: SPCWFT
Abstract
The role of climatic changes and adaptation measures in the formation of geo-ecological problems is considered, which are divided into the following groups by origin: (1) caused by climatogenic dynamics of intact landscapes and transformation of their ecosystem functions (these effects are shown on the example of taiga landscapes of the southern cryolithozone) or provoked by the negative impact of climatic changes on natural-anthropogenic processes and geotechnical systems (these effects are described on the example of periglacial geosystems disturbed by mining); (2) caused by anthropogenic transformation of landscapes and its consequences in the form of changes in the structure of the thermal balance of the Earth’ surface and moisture turnover in the surface atmosphere, which is manifested in the increase of thermal stress, droughts, floods, etc. natural disasters; 3) Caused by the adoption of urgent measures to combat climate change and creating risks to the favorable state of the environment. This issue is illustrated by the example of replacing the most important for climate regulation tropical rainforests with oil palm and soya bean plantations producing biofuel feedstock. In the context of consideration of the environment-forming role of living matter, the model of geographical organization of the biosphere is characterized, and the significance of its zonal-functional types for comparative assessment of the vulnerability of territories to climate change is analyzed. It is shown that modern landscapes representing them, differing in their heat and moisture exchange potential, are an important part of the Earth’s climatic system. The results of processing thermal infrared images for comparative assessment of homeostatic function of forest landscapes–the most important regulators of the Earth surface heat balance–are analyzed. The possibility of using near-surface temperatures obtained from the results of thermal infrared imagery processing for identification of landscapes with different types of ecological functions in the boreal cryolithozone conditions is shown. The indicative value of apparent heat fluxes that increase climate warming due to ongoing abiotisation of land in the form of progressive deforestation, desertification and impact of anthropogenic infrastructure is substantiated. The scales of atmospheric-ecological impact of deserted lands on neighboring territories under the conditions of atmospheric circulation changes are discussed. The conceptual basis of adaptation to climate change is formulated, which consists in the implementation of measures on greening and watering of land landscapes, restoration of terrestrial phytomass and ecological optimisation of the land fund of countries and territories on the basis of maximum consideration of the natural structure of zonal landscapes.
Keywords
About the Author
A. A. MedvedkovRussian Federation
Moscow
References
1. ACIA. Impacts of a Warming Arctic: Arctic Climate Impact Assessment. ACIA Overview report. CUP, 2004. Available at: https://www.amap.no/documents/doc/impacts-of-a-warming-arctic-2004/786 (accessed: 15.03.2024).
2. Ananicheva M.D, Litvinenko T.V., Filippova V. Climate change in the Republic of Sakha (Yakutia) and its impact on the population: instrumental measurement and observations of the local population. Geogr. Sreda Zhiv. Syst., 2021, no. 3, pp. 6–21. (In Russ.). https://doi.org/10.18384/2712-7621-2021-3-6-21
3. Artaxo P., Hansson H.C., Machado L.A.T., Rizzo L.V. Tropical forests are crucial in regulating the climate on Earth. PLOS Clim., 2022, vol. 1, no. 8, art. e0000054. https://doi.org/10.1371/journal.pclm.0000054
4. Bogdanova E. Environmental impact assessment and the precautionary principle: international legal aspects. Pravo Upravl. XXI Vek, 2016, no. 2, pp. 28–33. (In Russ.).
5. Bonan G.B. Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science, 2008, vol. 320, no. 5882, pp. 1444–1449. https://doi.org/10.1126/science.1155121
6. Borisov B.Z., Fedorov P.P., Chikidov I.I., Desyatkin A.R. Isolation of permafrost in the area of their sporadic distribution using thermal channels of Landsat-7 ETM + satellite images. Uspekhi Sorvrem. Estestvozn., 2017, no. 5, pp. 78–82. (In Russ.).
7. Budyko M.I. Global’naya ekologiya [Global Ecology]. Moscow: Mysl’ Publ., 1977. 327 p.
8. Cailleux A., Tricart J. The problem of classification of geomorphological facts. In Vopr. klimaticheskoi i strukturnoi geomorfologii [Issues of Climatic and Structural Geomorphology]. Moscow: Izd-vo inostrannoi literatury, 1959, pp. 32–66. (In Russ.).
9. Darras K.F.A., Corre M.D., Formaglio G., et al. Reducing fertilizer and avoiding herbicides in oil palm plantations-ecological and economic valuations. Front. For. Glob. Change, 2019, vol. 2, art. e65. https://doi.org/10.3389/ffgc.2019.00065
10. Desert studies as a branch of geographical science. In Pochvy, biogeokhimicheskie tsikly i biosfera [Soil, Biogeochemical Cycles and Biosphere]. Moscow: KMK Publ., 2004, pp. 226–238. (In Russ.).
11. Duarte M., Acácio da Silva T., Paixão de Sousa J., Lemos de Castro A., Lourenço R. Fuzzy inference system for mapping forest fire susceptibility in Northern Rondônia, Brazil. Geogr., Environ., Sustain., 2024, vol. 17, no. 1, pp. 83–94. https://doi.org/10.24057/2071-9388-2023-2910
12. Elagin I.N. Vremena goda v lesakh Rossii [Seasons in the Forests of Russia]. Novosibirsk, 1994. 271 p.
13. Fargione J., Hill J., Tilman D., Polasky S., Hawthorne P. Land clearing and the biofuel carbon debt. Science, 2008, vol. 319, pp. 1235–1238.
14. Flach R., Abrahão G., Bryant B., Scarabello M., Soterroni A.C., Ramos F.M., Valin H., Obersteiner M., Cohn A.S. Conserving the Cerrado and Amazon biomes of Brazil protects the soy economy from damaging warming. World Dev., 2021, vol. 146, art. e105582. https://doi.org/10.1016/j.worlddev.2021.105582
15. Galenko E.P. Energy factors of productivity of coniferous forests of the northern taiga. Izv. Akad. Nauk, Ser. Geogr., 1976, no. 4, pp. 84–89. (In Russ.).
16. Galenko E.P. Thermal regime formation of soils in coniferous ecosystems of boreal zone in reference to dominating tree species and forest type. Izv. Komi Nauch. Tsentra UrO RAN, 2013, no. 1, pp. 32–37. (In Russ.).
17. Ge Y., Abuduwaili J., Ma L., Liu D. Temporal variability and potential diffusion characteristics of dust aerosol originating from the Aral Sea basin, Central Asia. Water Air Soil Pollut., 2016, vol. 227, no. 2, art. e63. https://doi.org/10.1007/s11270–016–2758–6
18. Ghilyarov A.M. Inescapable threats to biological diversity. Priroda, 2011, no. 9, pp. 3–12. (In Russ.).
19. Golovin M.S., Kydryavtseva O.V. State policy for transport biofuel industry development in the European Union. Gos. Upravl. Elektr. Vestn., 2020, no. 78, pp. 72–90. (In Russ.). https://doi.org/10.24411/2070-1381-2020-10034
20. Gorshkov S.P. Kontseptual’nye osnovy geoekologii [Conceptual Foundations of Geoecology]. Moscow: Zheldorizdat Publ., 2001. 592 p.
21. Gorshkov S.P. Uchenie o biosfere. Vvedenie [The Doctrine of the Biosphere. Introduction]. Moscow: Geogr. Fakul’tet MGU, 2007. 118 p.
22. Gorshkov S.P. Organization of the biosphere and sustainable development. Zhyzn’ Zemli, 2015, vol. 37, pp. 62–84. (In Russ.).
23. Gorshkov S.P., Vandenberg J., Alekseev B.A., Mochalova O.I., Tishkova M.A. Klimat, merzlota i landshafty Sredneeniseiskogo regiona [Climate, Permafrost and Landscapes of the Middle Yenisei Region]. Moscow: MGU, 2003. 90 p.
24. Hofmann G.S., Cardoso M.F., Alves R.J.V., Weber E.J., Barbosa A.A., Toledo P.M., Pontual F.B., Salles L.O., Hasenack H., Cordeiro J.L.P., Aquino F.E., Oliveira L.F.B. The Brazilian Cerrado is becoming hotter and drier. Glob. Change Biol., 2021, vol. 27, no. 17, pp. 4060–4073. https://doi.org/10.1111/gcb.15712
25. IPCC. Climate Change and Land. An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems. Summary for Policymakers. Shukla P.R., Skea J., Calvo Buendia E., et al., Eds. 2020. Isachenko A.G. Vvedenie v ekologicheskuyu geografiyu [Introduction to Ecological Geography]. St. Petersburg.: SPbGU, 2003. 192 p.
26. Kharuk V.I., Dvinskaya M.L., Im S.T. Forest fires in Evenkiya. Priroda, 2008, no. 8, pp. 42–47. (In Russ.).
27. Kharuk V.I., Shushpanov A.S., Im S.T. Climatogenic dynamics of solifluction in the permafrost zone of Central Siberia. Zh. Sibir. Fed. Univ. Tekhn. Tekhnol., 2015, vol. 8, no. 6, pp. 744–754. (In Russ.). https://doi.org/10.17516/1999-494X-2015-8-6-744-754
28. Khojasteh D., Haghani M., Shamsipour A., Zwack C.C., Glamore W., Nicholls R.J., England M.H. Climate change science is evolving toward adaptation and mitigation solutions. WIREs Clim. Change, 2024, art. e884. https://doi.org/10.1002/wcc.884
29. Kondrat’ev K.Ya. Uncertainties of observational data and numerical climate modeling. In Vsemirnaya konf. po izmeneniyu klimata. Tr. konf. [World Climate Change Conf. Proc. of the Conf.]. Moscow, 2004, pp. 196– 215. (In Russ.).
30. Kotlyakov V.M. Izbrannye sochineniya. Kniga 3. Geografiya v menyayushchemsya mire. [Selected Works. Book 3. Geography in a Changing World]. Moscow: Nauka Publ., 2001. 411 p.
31. Krenke A.N., Zolotokrylin A.N. The role of vegetation cover in climate formation. Izv. Akad. Nauk. Fizika Atm. Okeana, 1984, no. 11, pp. 1081–1088. (In Russ.).
32. Lawrence D., Vandecar K. Effects of tropical deforestation on climate and agriculture. Nat. Clim. Change, 2015, vol. 5, pp. 27–36. https://doi.org/10.1038/nclimate2430
33. Makeev V.M., Klokov K.B., Kolpashchikov L.A., Mikhajlov V.V. Severnyi olen’ v usloviyakh menyayushchegosya klimata [Reindeer in a Changing Climate]. St. Petersburg: GPA Publ., 2014. 244 p.
34. Marshall G.J., Vignols R.M., Rees W.G. Climate change in the Kola Peninsula, Arctic Russia, during the last 50 years from meteorological observations. J. Clim., 2016, vol. 29, no. 18, pp. 6823–6839. https://doi.org/10.1175/JCLI-D-16-0179.1
35. Medvedkov A.A. The Kets ethnos and its “feeding landscape”: ecological-geographical and socio-ecological problems under globalization and changing climate. Geogr., Environ., Sustain., 2013, vol. 6, no. 3, pp. 108–118. https://doi.org/10.24057/2071-9388-2013-6-3–108-118
36. Medvedkov A.A. Geoenvironmental response of the Yenisei Siberia mid-taiga landscapes to global warming during late XX–early XXI centuries. Water Resour., 2015, vol. 42, pp. 922–931. https://doi.org/10.1134/S0097807815070076
37. Medvedkov A.A. Mapping of permafrost landscapes based on the analysis of termal images. InterKarto. InterGIS, 2016, vol. 22, no. 1, pp. 380–384. (In Russ.). https://doi.org/10.24057/2414-9179-2016-1-22-380-384
38. Medvedkov A.A. Response of middle-taiga permafrost landscapes of Central Siberia to global warming in the late 20th and early 21st centuries. IOP Conf. Ser.: Earth Environ. Sci., 2016, vol. 48, art. e012009. https://doi.org/10.1088/1755-1315/48/1/012009
39. Medvedkov A.A. Srednetaezhnye geosistemy Prieniseiskoi Sibiri v usloviyakh menyayushchegosya klimata [Middle Taiga Geosystems of Yenisei Siberia in a Changing Climate]. Moscow: MAKS Press Publ., 2016. 144 p.
40. Medvedkov A.A. Climatogenic dynamics of Siberian taiga landscapes in the Middle Yenisei River basin. Geogr. Prir. Resur., 2018, no. 4, pp. 122–129. (In Russ.). https://doi.org/10.21782/GIPR0206-1619-2018-4(122-129)
41. Medvedkov A.A. Geoenvironmental factors of resilience of arctic cities in the cryolithozone: theoretical approaches to the study. Izv. Akad. Nauk, Ser. Geogr., 2021, vol. 85, no. 5, pp. 726–739. (In Russ.). https://doi.org/10.31857/S2587556621050071
42. Medvedkov A.A., Kotova M.V. Fire-Fighting Capability of Forests in Water Protection Zone of Lake Baikal (Case Study of Baikal-Lena Nature Reserve). Izv. Akad. Nauk, Ser. Geogr., 2020, vol. 84, no. 5, pp. 764–775. (In Russ.). https://doi.org/10.31857/S2587556620050118
43. Medvedkov A.A., Vysotskaya A.A., Ginzburg A.P., Kozlov S.M. Itogovyi otchet po proektu RNF № 21-77-00048 “Ekologo-geograficheskie posledstviya i riski klimaticheskikh izmenenii dlya zhizneobespecheniya ketskogo etnosa – taezhnykh rybolovov i sobiratelei” [Final Report on the RSF Project No. 21–77–00048 “Ecological and Geographical Consequences and Risks of Climate Change for the Livelihoods of the Ket Ethnic Group – Taiga Fishermen and Gatherers”], 2023. 31 p.
44. Medvedkov A.A., Vysotskaya A.A., Olchev A.A. Detection of geocryological conditions in boreal landscapes of the southern cryolithozone using thermal infrared remote sensing data: А case study of the northern part of the Yenisei Ridge. Remote Sens., 2023, vol. 15, no. 2, art. e291. https://doi.org/10.3390/rs15020291
45. Millennium Ecosystem Assessment, 2005. Available at: https://www.millenniumassessment.org/en/Reports.html# (accessed: 01.03.2024).
46. Minin A.A. Some aspects of the interrelationships of terrestrial ecosystems with a changing climate. Uspekhi Sovrem. Biol., 2011, vol. 131, no. 4, pp. 407–415. (In Russ.).
47. Munang R., Thiaw I., Alverson K., Liu J., Han Z. The role of ecosystem services in climate change adaptation and disaster risk reduction. Curr. Opin. Env. Sust., 2013, vol. 5, no. 1, pp. 47–52. https://doi.org/10.1016/j.cosust.2013.02.002
48. Myagkov M.S. The influence of the megalopolis Moscow on the amount of evaporation. Meteorol. Gidrol., 2005, no. 3, pp. 78–84. (In Russ.).
49. Noskova N.E., Romanova L.I. The influence of climatic changes on the structural and functional properties of male generative organs of Siberian coniferous species. Khvoin. Boreal. Zony, 2015, vol. 33, no. 1–2, pp. 38– 42. (In Russ.).
50. Popova O.G., Popov M.G., Arakelyan F.O., Nedyadko V.V. Studying the geodynamics of the geological environment in the Murmansk region of the Kola Peninsula using seismic and environmental monitoring. In Sergeevskie chteniya. Geoekologicheskaya bezopasnost’ razrabotki mestorozhdenii poleznykh iskopaemykh [Sergeev Readings. Geoecological Safety of Mineral Deposits Development]. Moscow: RUDN, 2017, pp. 549–554. (In Russ.).
51. Popova O.G., Popov M.G., Arakelyan F.O., Nedyadko V.V., Vasyutinskaya S.D. The main results in local seismic ecological monitoring in different regions of the Russian Federation. Geoekol. Inzhener. Geol. Gidrogeol. Geokriol., 2016, no. 6, pp. 483–496. (In Russ.).
52. Pavlov D.S., Striganova B.R., Bukvareva E.N. Ecocentric concept of nature management. Vestn. RAN, 2010, vol. 80, no. 2, pp. 131–140. (In Russ.). Song X.P., Hansen M.C., Potapov P., Adusei B., Pickering J., Adami M. et al. Massive soybean expansion in South America since 2000 and implications for conservation. Nat. Sustain., 2021, vol. 4, no. 9, pp. 784–792. https://doi.org/10.1038/s41893-021-00729-z
53. The Earth’s energy budget, climate feedbacks, and climate sensitivity. In IPCC Sixth Assessment Report Impacts, Adaptation and Vulnerability, 2022. Available at: https://www.ipcc.ch/report/ar6/wg2/ (accessed: 01.03.2024).
54. Titkova T.B., Vinogradova V. V. Climate changes in transitional natural areas of Russian northern regions and their display in landscape spectral characteristics. Sovrem. Probl. Dist. Zondir. Zemli Kosmosa, 2019, vol. 16, no. 5, pp. 310–323. (In Russ.). https://doi.org/10.21046/2070-7401-2019-16-5-310-323
55. Vijay V., Pimm S.L., Jenkins C.N., Smith S.J. The impacts of oil palm on recent deforestation and biodiversity. PLoS ONE, 2016, vol. 11, no. 7, art. e0159668. https://doi.org/10.1371/journal.pone.0159668
56. Vysotskaya A.A., Medvedkov A.A. Climate-driven “greening” of the kurum landscape in the valley of the lower reaches of the Podkamennaya Tunguska river. InterKarto. InterGIS, 2022, vol. 28, no. 1, pp. 305–313. (In Russ.). https://doi.org/10.35595/2414-9179-2022-1-28-305-313
57. Wu M., Schurgers G., Rummukainen M., Smith B., Samuelsson P., Jansson C., Siltberg J., May W. Vegetation–climate feedbacks modulate rainfall patterns in Africa under future climate change. Earth Syst. Dyn., 2016, vol. 7, no. 3, pp. 627–647. https://doi.org/10.5194/esd-7-627-2016
58. Zhukova S.A. Assessment of the influence of rock waterlogging on the manifestation of technogenic seismicity during mining of the Khibiny massif. Extended Abstract of Cand. Sci. (Engineering) Dissertation. Apatity: Mining Institute KSC RAS, 2016. 24 p.
59. Zolotokrylin A.N. Klimaticheskoe opustynivanie [Climatic Desertification]. Moscow: Nauka Publ., 2003. 246 p.
Review
For citations:
Medvedkov A.A. Geoecological Problems in the Context of Climate Change: Theoretical Analysis and Regional Manifestations. Izvestiya Rossiiskoi Akademii Nauk. Seriya Geograficheskaya. 2024;88(3):263-280. (In Russ.) https://doi.org/10.31857/S2587556624030011. EDN: SPCWFT