Preview

Izvestiya Rossiiskoi Akademii Nauk. Seriya Geograficheskaya

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Probabilistic Study of the Evolution of Landscape Morphological Patterns in the Cryolithozone in Relation to Climate Change

https://doi.org/10.31857/S2587556624030034

EDN: SOVOPJ

Abstract

The aim of this research is to assess the nature of morphological pattern evolution related to climatic changes for the most typical landscapes in the permafrost zone, including lacustrine thermokarst plains, thermokarst plains with fluvial erosion, and floodplains, based on the probabilistic approach. Twenty-eight key sites in different physiographic environments were selected for study. The key sites were composed of different deposits, such as deltaic, lacustrine-alluvial, alluvial and alluvial-marine, fluvioglacial, and lake- marsh formations. Based on high-resolution satellite imagery, samples of quantitative characteristics of the landscape morphological patterns under consideration, such as thermokarst lake areas for thermokarst plains and arrow lengths of forming fragments for floodplains, were obtained for two survey dates with 40–55 year intervals. Samples for each site were compared using the Smirnov test. The probabilistic analysis of the quantitative characteristics of morphological patterns for typical permafrost landscapes over 40–55 years leads to the conclusion that the morphological pattern changes are rather limited. At the same time, a statistically confirmed evolution of morphological patterns is observed for a number of key sites of thermokarst plains, but the changes are practically not recorded within the floodplain landscapes in the considered time interval. The changes of morphological patterns are more intensive for the thermokarst plains with fluvial erosion in comparison with the lacustrine thermokarst plains, which can be explained by a more active response of thermal erosion to climatic changes in comparison with the thermokarst process. The observed changes in morphological patterns are limited to the western part of Western Siberia, but they show landscape differentiation even in the case of close location, which indicates the important role of sediment composition and geocryological conditions.

About the Authors

A. S. Victorov
Sergeev Institute of Environmental Geoscience, Russian Academy of Sciences
Russian Federation

Moscow



M. V. Arhipova
Sergeev Institute of Environmental Geoscience, Russian Academy of Sciences
Russian Federation

Moscow



V. N. Kapralova
Sergeev Institute of Environmental Geoscience, Russian Academy of Sciences
Russian Federation

Moscow



T. V. Orlov
Sergeev Institute of Environmental Geoscience, Russian Academy of Sciences
Russian Federation

Moscow



O. N. Trapeznikova
Sergeev Institute of Environmental Geoscience, Russian Academy of Sciences
Russian Federation

Moscow



References

1. Chalov R.S. Geograficheskie issledovaniya ruslovykh protsessov [Geographic Studies of Channel Processes]. Moscow: Izd-vo Mosk. Univ., 1979. 232 p.

2. Chalov R.S., Chernov A.V. Geomorphological classification of plain rivers flood-plains. Geomorfol., 1985, no. 3, pp. 3–11. (In Russ.).

3. Grosse G., Romanovsky V., Walter K., Morgenstern A., Lantuit H., Zimov S. Distribution of thermokarst lakes and ponds at three yedoma sites in Siberia. In Ninth international conference on permafrost. Vol. 1. University of Alaska Fairbanks, 2008, pp. 551–556.

4. Joung R.W. The patterns of some meandering valleys in New South Wales. Austral. Geogr., 1970, vol. 11, no. 3, pp. 269–277.

5. Kapralova V.N. Regularities of the development of thermokarst processes within. lake-thermokarst plains (based on approaches of mathematical morphology of the landscape). Extended Abstract Cand. Sci. (Geolog.) Dissertation. Moscow: IEG RAS, 2014. 24 p.

6. Kapralova V.N., Chesnokova I.V., Makarycheva E.M., Sergeev D.O. Importance of the variability of geocryological conditions in the determination of the significance of the lakes in the structure of regional water discharge. Water Resour., 2019, vol. 46, pp. S81–S86.

7. Kotlyakov V.M., Velichko A.A., Glazovsky A.F., Tumskii V.E. The past and present-day Arctic cryosphere. Her. Russ. Acad. Sci., 2015, vol. 85, pp. 251–259. https://doi.org/10.1134/S1019331615030132

8. Kravtsova V.I., Rodionova T.V. Investigation of the dynamics in area and number of thermokarst lakes in various regions of Russian cryolithozone, using satellite images. Kriosf. Zemli, 2016, vol. 20, no. 1, pp. 81–89. (In Russ.).

9. Lotsari E., Hackney C., Salmela J., Kasvi E., Kemp J., Alho P., Darby S.E. Sub-arctic river bank dynamics and driving processes during the open channel flow period. Earth Surf. Process. Landf., 2019, vol. 45, no. 5, pp. 1198–1216. https://doi.org/10.1002/esp.4796

10. Metodicheskoe rukovodstvo po inzhenerno-geologicheskoi s’’emke masshtaba 1 : 200 000 (1 : 100 000– 1 : 500 000) [Methodological Guide for Engineering- Geological Survey on the Scale of 1 : 200 000 (1 : 100 000–1 : 500 000)]. Moscow: Nedra Publ., 1978. 391 p.

11. Morgenstern A., Overduin P.P., Günther F., Stettner S., Ramage J., Schirrmeister L., Grigoriev M.N., Grosse G. Thermo erosional valleys in Siberian ice-rich permafrost. Permafr. Periglac. Process., 2021, vol. 32, no. 1, pp. 59–75. https://doi.org/10.1002/ppp.2087

12. Muster S., Riley W.J., Roth K., Langer M., Cresto Aleina F., Koven Ch.D., Lange S., Bartsch A., Grosse G., Wilson C.J., Jones B.M., Boike J. Size distributions of Arctic waterbodies reveal consistent relations in their statistical moments in space and time. Front. Earth Sci., 2019, vol. 7, art. 5. https://doi.org/10.3389/feart.2019.00005

13. Muster S., Roth K., Langer M., Lange S., Cresto Aleina F., Bartsch A., Morgenstern A., Grosse G., Jones B., Sannel A.B.K., Sjöberg Y., Günther F., Andresen C., Veremeeva A., Lindgren P.R., Bouchard F., Lara M.J., Fortier D., Charbonneau S., Virtanen T.A., Hugelius G., Palmtag J., Siewert M.B., Riley W.J., Koven C.D., Boike J. PeRL: a circum- Arctic Permafrost Region Pond and Lake database. Earth Syst. Sci. Data, 2017, vol. 9, pp. 317–348. https://doi.org/10.5194/essd-9-317-2017

14. Nanson G.C., Croke J.C. A genetic classification of floodplains. Floodplain Evolution. Geomorphology, 1992, vol. 4, no. 6, pp. 460–486.

15. Nicolsky D.J., Romanovsky V.E., Panda S.K., Marchenko S.S., Muskett R.R. Applicability of the ecosystem type approach to model permafrost dynamics across the Alaska North Slope. Geophys. Res. Earth Surf., 2017, vol. 122, pp. 50–75. https://doi.org/10.1002/2016JF003852

16. Nitze I., Grosse G., Jones B.M., Arp C.D., Ulrich M., Fedorov A., Veremeeva A. Landsat-based trend analysis of lake dynamics across northern permafrost regions. Remote Sens., 2017, vol. 9, no. 7, art. 640. https://doi.org/10.3390/rs9070640

17. Olefeldt D., Goswami S., Grosse G., Hayes D.J., Hugelius G., Kuhry P., Sannel B., Schuur E.A.G., Turetsky M.R. Arctic circumpolar distribution and soil carbon of thermokarst landscapes. Nature, 2016, vol. 7, pp. 1–11. https://doi.org/10.1038/ncomms13043

18. Panin A.V., Sidorchuk A.Yu., Chernov A.V. Main stages of the flood-plain formation in Northern Eurasia. Geomorfol., 2011, no. 3, pp. 20–31. (In Russ.).

19. Pekel J.-F., Cottam A., Gorelick N., Belward A.S. High- resolution mapping of global surface water and its long- term changes. Nature, 2016, vol. 540, pp. 418–422. https://doi.org/10.1038/nature20584

20. Peschke G. Zur Anwendbarkeit statistischer Modelle fur die Untersuchung des Maanderproblems. Acta Hydrophys., 1973, vol. 17, no. 2–3, pp. 235–247. (In German).

21. Polishchuk V.Yu. Polishchuk Yu.M. Geoimitatsionnoe modelirovanie polei termokarstovykh ozer v zonakh merzloty [Geosimulation Modeling of Fields of Thermokarst Lakes in Permafrost Zones]. Khanty- Mansiysk: UIP YUGU, 2013. 128 p.

22. Popov I.V. Metodologicheskie osnovy gidromorfologicheskoi teorii ruslovogo protsessa: Izbrannye trudy [Methodo- logical Foundations of the Hydromorphological The- ory of the Channel Process. Selected Works]. St. Pe- tersburg: Nestor-Istorya Publ., 2012. 304 p.

23. Sylvester Z., Durkin P., Covault J.A. High curvatures drive river meandering. Geology, 2019, vol. 47, no. 3, pp. 263–266. https://doi.org/10.1130/G45608.1

24. Trifonova T.A. Methods of morphometric characterization of types and subtypes of the Ob river floodplain based on interpretation of aerial photographs. Vestn. Mosk. Univ., Ser.: Biol., Pochvoved., 1975, no. 5, pp. 15–26. (In Russ.).

25. Viktorov A.S., Arkhipova M.V., Kapralova V.N., Orlov T.V., Trapeznikova O.N. Evaluation of climate- induced evolution of the morphological structure of thermokarst plains in the permafrost zone using remote sensing data. Geoekol. Inzh. Geol. Gidrogeol. Geokriol., 2023, no. 2, pp. 76–86. (In Russ.). https://doi.org/10.31857/S0869780923020091

26. Viktorov A.S., Kapralova V.N., Orlov T.V., Trapeznikova O.N., Arkhipova M.V., Berezin P.V., Zverev A.V., Panchenko E.N., Sadkov S.A. Analysis of the morphological structure development of the thermokarst-lake plains on the base of the mathematical model. Geomorfol., 2015, no. 3, pp. 3–13. (In Russ.). https://doi.org/10.15356/0435-4281-2015-3


Review

For citations:


Victorov A.S., Arhipova M.V., Kapralova V.N., Orlov T.V., Trapeznikova O.N. Probabilistic Study of the Evolution of Landscape Morphological Patterns in the Cryolithozone in Relation to Climate Change. Izvestiya Rossiiskoi Akademii Nauk. Seriya Geograficheskaya. 2024;88(3):296-305. (In Russ.) https://doi.org/10.31857/S2587556624030034. EDN: SOVOPJ

Views: 70


ISSN 2587-5566 (Print)
ISSN 2658-6975 (Online)