Preview

Izvestiya Rossiiskoi Akademii Nauk. Seriya Geograficheskaya

Advanced search
Open Access Open Access  Restricted Access Subscription Access

Structure and Dynamics of Pinus sibirica Du Tour Forest Stands at the Upper Limit of Their Growth in the Western Part of the Katunsky Range (Altai) under Climate Change

https://doi.org/10.31857/S2587556624030052

EDN: SOKVII

Abstract

The forest boundary is characterized by being highly sensitive to climate change. In this regard, monitoring the distribution of forested areas on the southern and northern boundaries of the forest in lowland conditions, as well as the upper and lower boundaries of the forest in mountainous regions, is one of the simplest and most effective methods for studying the response of vegetation to climate change. In the western part of the Katun Range (Central Altai), based on the use of classical dendrochronological methods, the age of 891 Pinus sibirica Du Tour trees growing at different altitudes above sea level was established. Comparison of the altitudinal position of the upper limit of tree vegetation according to topographic maps of 1956 and modern satellite images made it possible to establish the rate of change in forested areas depending on the presence or absence of edaphic restrictions for the successful regeneration of tree species. It is shown that, starting from the second half of the 20th century. There is an intensive expansion of Pinus sibirica, the most common tree species in the study area, into the belt of mountain meadows and tundras. The nature and rate of colonization by woody vegetation vary significantly depending on the exposure of the slope and its hypsometric characteristics. The closest connections were found between the appearance of cedar and climatic indicators of the cold period (temperature and precipitation), this is especially typical for slopes with northern and eastern exposures. It was shown that the expansion of the forest was favored by a general change in climatic conditions in the study area.

About the Authors

A. A. Grigoriev
Institute of Plant and Animal Ecology, Ural Branch, Russian Academy of Sciences
Russian Federation

Yekaterinburg



S. O. Vyukhin
Institute of Plant and Animal Ecology, Ural Branch, Russian Academy of Sciences
Russian Federation

Yekaterinburg



Y. V. Shalaumova
Institute of Plant and Animal Ecology, Ural Branch, Russian Academy of Sciences
Russian Federation

Yekaterinburg



D. S. Balakin
Institute of Plant and Animal Ecology, Ural Branch, Russian Academy of Sciences
Russian Federation

Yekaterinburg



A. C. Timofeev
Institute of Plant and Animal Ecology, Ural Branch, Russian Academy of Sciences
Russian Federation

Yekaterinburg



A. M. Gromov
Institute of Plant and Animal Ecology, Ural Branch, Russian Academy of Sciences
Russian Federation

Yekaterinburg



D. Y. Golikov
Botanical Garden, Ural Branch, Russian Academy of Sciences
Russian Federation

Yekaterinburg



N. V. Nizametdinov
Institute of Plant and Animal Ecology, Ural Branch, Russian Academy of Sciences
Russian Federation

Yekaterinburg



P. A. Moiseev
Institute of Plant and Animal Ecology, Ural Branch, Russian Academy of Sciences
Russian Federation

Yekaterinburg



References

1. Büntgen U., Hellmann L., Tegel W., Normand S., Myers-Smith I., Kirdyanov A.V., Nievergelt D., Schweingruber F.H. Temperature-induced recruit- ment pulses of Arctic dwarf shrub communities. J. Ecol., 2015, vol. 103, no. 2, pp. 489–501. https://doi.org/10.1111/1365-2745.12361

2. Cazzolla G.R., Callaghan T., Velichevskaya A., Dudko A., Fabbio L., Battipaglia G., Liang J. Accelerating upward treeline shift in the Altai Mountains under last century climate change. Sci. Rep., 2019, vol. 9, art. 7678. https://doi.org/10.1038/s41598-019-44188-1

3. Chapin F.S., Sturm M., Serreze M.C., McFadden J.P., Key J.R., Lloyd A.H., McGuire A.D., Rupp T.S., Lynch A.H., Schimel J.P., et al. Role of land-surface changes in arctic summer warming. Science, 2005, vol. 310, no. 5748, pp. 657–660. https://doi.org/10.1126/science.1117368

4. Danby R.K., Hik D.S. Variability, contingency and rapid change in recent Subarctic alpine tree line dynamics. J. Ecol., 2007, vol. 95, no. 2, pp. 352–363. https://doi.org/10.1111/j.1365-2745.2006.01200.x

5. Gaisin I.K., Moiseev P.A., Makhmutova I.I., Nizametdinov N.F., Moiseeva O.O. Expansion of tree vegetation in the forest–mountain steppe ecotone on theSouthern Urals in relation to changes in climate and habitat moisture. Russ. J. Ecol., 2020, no. 4, pp. 251–264. https://doi.org/10.1134/S1067413620040074

6. Gorchakovskiy P.L., Shiyatov S.G. Fitoindikatsiya uslovii sredy i prirodnykh protsessov v vysokogor’yakh [Phytoindication of Environmental Conditions and Natural Processes in High Mountain Regions]. Moscow: Nauka Publ., 1985. 208 p.

7. Grigoriev A.A., Devi N.M., Kukarskikh V.V., V’yukhin S.O., Galimova A.A., Moiseev P.A., Fomin V.V. Structure and dynamics of tree stands at the upper timberline in the western part of the Putorana plateau. Russ. J. Ecol., 2019, no. 4, pp. 243–254. https://doi.org/10.1134/S1067413619040076

8. Grigoriev A.A., Shalaumova Y.V., Balakin D.S. Current Expansion of Juniperus sibirica Burgsd. to the Mountain Tundras of the Northern Urals. Russ. J. Ecol., 2021, no. 52, pp. 376–382. https://doi.org/10.1134/S1067413621050076

9. Grigoriev A.A., Shalaumova Y.V., Vyukhin S.O., Balakin D.S., Kukarskikh V.V., Vyukhina A.A., Camarero J.J., Moiseev P.A. Upward treeline shifts in two regions of Subarctic Russia are governed by summer thermal and winter snow conditions. Forests, 2022, vol. 13, no. 2, art. 174. https://doi.org/10.3390/f13020174

10. Hansson A., Dargusch P., Shulmeister J. A review of modern treeline migration, the factors controlling it and the implications for carbon storage. J. Mt. Sci., 2021, no. 18, pp. 291–306. https://doi.org/10.1007/s11629-020-6221-1

11. Harsch M.A., Hulme P.E., McGlone M.S., Dunca R.P. Are treelines advancing? A global meta-analysis of treeline response to climate warming. Ecol. Lett., 2009, no. 12, pp. 1040–1049. https://doi.org/10.1111/j.1461-0248.2009.01355.x

12. Holtmeier F.-K. Mountain Timberlines: Ecology, Patchiness, and Dynamics. Advanced Global Change Resource. Berlin, Heidelberg: Springer, 2009.

13. Holtmeier F.K., Broll G. Wind as an ecological agent at treelines in North America, the Alps, and the European subarctic. Phys. Geogr., 2010, vol. 31, no. 3, pp. 203–233. https://doi.org/10.2747/0272-3646.31.3.203

14. Im S.T., Kharuk V.I. Climate induced changes in Alpine Forest: Tundra ecotone, Siberian arctic mountains. Issled. Zemli Kosmosa, 2013, no. 5, 32 p. (In Russ.). https://doi.org/10.7868/S0205961413040052

15. IPCC. Climate Change 2022: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: CUP, 2022.

16. Jiao L., Chen K., Liu Х., Qi C., Xue R. Comparison of the response stability of Siberian larch to climate change in the Altai and Tianshan. Ecol. Indic., 2021, vol. 128, art. 107823. https://doi.org/10.1016/j.ecolind.2021.107823

17. Klinge M., et al. Climate effects on vegetation vitality at the treeline of boreal forests of Mongolia. Biogeosci., 2018, vol. 15, no. 5, pp. 1319–1333. https://doi.org/10.5194/bg-15-1319-2018

18. Körner C. Alpine treelines. Functional Ecology of the Global High Elevation Tree Limits. Berlin: Springer, 2012.

19. Kullman L., Öberg L. Post-little ice age treeline rise and climatic warming in the Swedish Scandes: A landscape ecological perspective. J. Ecol., 2009, no. 97, pp. 415–429. https://doi.org/10.1111/j.1365-2745.2009.01488.x

20. Kuyek N.J., Thomas S.C. Trees are larger on south slopes in late-seral conifer stands in northwestern British Columbia. Can. J. For. Res., 2019, vol. 49, no. 11, pp. 1349–1356. https://doi.org/10.1139/cjfr-2019-0089

21. MacQueen J. Some methods for classification and analysis of multivariate observations. In Proc. 5th Berkeley Symp. on Math. Statistics and Probability. Le Cam L.M., Neyman J., Eds. 1967, pp. 281–297.

22. Mazepa V.S. Stand density in the last millennium at the upper tree-line ecotone in the Polar Ural Mountains. Can. J. For. Res., 2005, no. 35, pp. 2082–2091. https://doi.org/10.1139/x05-111

23. Moiseev P.A., Hagedorn F., Balakin D.S., Bubnov M.O., Devi N.M., Kukarskih V.V., Mazepa V.S., Viyukhin S.O., Viyukhina A.A., Grigoriev A.A. Stand biomass at treeline ecotone in Russian subarctic mountains is primarily related to species composition but its dynamics driven by improvement of climatic conditions. Forests, 2022, vol. 13, no. 2, art. 254. https://doi.org/10.3390/f13020254

24. Narozhniy Y., Zemtsov V. Current state of the Altai glaciers (Russia) and trends over the period of instrumental observations 1952–2008. Ambio, 2011, no. 40, pp. 575–588. https://doi.org/10.1007/s13280-011-0166-0

25. Paromov V.V., Narozhnyi Y.K., and Shantykova L.N. Estimation of current dynamics and forecast of glaciological characteristics of the Malyi Aktru glacier (Central Altai). Led Sneg, 2018, vol. 58, no. 2, pp. 171–182. (In Russ.). https://doi.org/10.15356/2076-6734-2018-2-171-182

26. Pauli H., Gottfried M., Dullinger S., et al. Recent plant diversity changes on Europe’s mountain summits. Science, 2012, vol. 336, no. 6079, pp. 353–355. https://doi.org/10.1126/science.1219033

27. Rossi S., Deslauriers A., Anfodillo T., Carraro V. Evidence of threshold temperatures for xylogenesis in conifers at high altitudes. Oecologia, 2007, no. 152, pp. 1–12. https://doi.org/10.1007/s00442-006-0625-7

28. Shiyatov S.G. Dinamika drevesnoi i kustarnikovoi rastitel’nosti v gorakh polyarnogo urala pod vliyaniem sovremennykh izmenenii klimata [Dynamics of Woody and Shrubby Vegetation in the Mountains of the Polar Urals under the Influence of Modern Climate Changes]. Yekaterinburg: UrO RAN, 2009. 216 p.

29. Shiyatov S.G., Vaganov E.A., Kirdyanov A.V., Kruglov V.B., Mazepa V.S, Naurzbaev M.M., Hantemirov R.M. Metody dendrokhronologii: uchebno-metodicheskoe posobie. Ch. 1. Osnovy dendrokhronologii. Sbor i poluchenie drevesno-kol’tsevoi informatsii [Methods of Dendrochronology: Educational and Methodological Manual. Part 1. Fundamentals of Dendrochronology. Collection and Receipt of Tree-ring Information]. Krasnoyarsk: Krasnoyarsk Gos. Univ., 2000.

30. Shrestha K.B., Hofgaard A., Vandvik V. Recent treeline dynamics are similar between dry and mesic areas of Nepal, central Himalaya. J. Plant Ecol., 2015, vol. 8, no. 4, pp. 347–358. https://doi.org/10.1093/jpe/rtu035

31. Sturm M., Schimel J., Michaelson G., Welker J.M., Oberbauer S.F., Liston G.E., Fahnestock J., Romanovsky V.E. Winter biological processes could help convert arctic tundra to shrubland. BioScience, 2005, vol. 55, no. 1, pp. 17–26. https://doi.org/10.1641/0006-3568(2005)055[0017:WBPCHC]2.0.CO;2

32. Taynik A.V., Barinov V.V., Oidupaa O.Ch., Myglan V.S., Reinig F., Buntgen U. Growth coherency and climate sensitivity of Larix sibirica at the upper treeline in the Russian Altai Sayan Mountains. Dendrochronologia, 2016, no. 39, pp. 10–16. https://doi.org/10.1016/j.dendro.2015.12.003

33. Timoshok E.E., Timoshok E.N., Nikolaeva S.A., Savchuk D.A., Filimonova E.O., Skorokhodov S.N., Bocharov A.Yu. Monitoring of high-altitude terrestrial ecosystems in the Altai Mountains. IOP Conf. Ser.: Earth Environ. Sci., 2016, vol. 48, art. 012008. https://doi.org/10.1088/1755-1315/48/1/012008

34. Tretii otsenochnyi doklad ob izmeneniyakh klimata i ikh posledstviyakh na territorii Rossiiskoi Federatsii [Third Assessment Report on Climate Change and its Consequences on the Territory of the Russian Federation]. Katsov V.M., Ed. St. Petersburg: Naukoemkie tehnologii Publ., 2022.

35. Vaganov E.A., Shijatov S.G., Mazepa V.S. Dendroklimaticheskie issledovaniya v Uralo-Sibirskoi Subarktike [Dendroclimatic Studies in the Ural- Siberian Subarctic]. Novosibirsk: Nauka Publ., 1996.

36. Volkov I.V., Zemtsov V.A., Erofeev A.A., Babenko A.S., Volkova A.I., Callaghan T.V. The dynamic land-cover of the Altai Mountains: Perspectives based on past and current environmental and biodiversity changes. Ambio, 2021, no. 50, pp. 1991–2008. https://doi.org/10.1007/s13280-021-01605-y

37. Ziaco E., Biondi F., Rossi S., Deslauriers A. Climatic influences on wood anatomy and tree-ring Features of great basin conifers at a new mountain Observatory. Appl. Plant Sci., 2014, vol. 2, no. 10, art. 1400054. https://doi.org/10.3732/apps.1400054


Review

For citations:


Grigoriev A.A., Vyukhin S.O., Shalaumova Y.V., Balakin D.S., Timofeev A.C., Gromov A.M., Golikov D.Y., Nizametdinov N.V., Moiseev P.A. Structure and Dynamics of Pinus sibirica Du Tour Forest Stands at the Upper Limit of Their Growth in the Western Part of the Katunsky Range (Altai) under Climate Change. Izvestiya Rossiiskoi Akademii Nauk. Seriya Geograficheskaya. 2024;88(3):321-336. (In Russ.) https://doi.org/10.31857/S2587556624030052. EDN: SOKVII

Views: 137


ISSN 2587-5566 (Print)
ISSN 2658-6975 (Online)