

Methodology for Remote Assessment of Thermal Characteristics of Lakes in Permafrost Zone of European Russia
https://doi.org/10.31857/S2587556624060025
EDN: ALARYU
Abstract
The purpose of the study is to adapt the methodology of remote assessment of hydrothermodynamic characteristics of unstudied lakes to the conditions of the European Russia’s permafrost zone. The basis of the methodology is the synthesis of the results of thematic interpretation of satellite images, geostatistical assessment of their morphometric characteristics of lakes and mathematical modeling of thermodynamic processes in them. The objects of study are the permafrost zone reservoirs of three lake regions of the European Russia: the Kola segment of the Baltic Shield, the coastal plains of the Kara Sea and the western slope of the Ural Mountains, in each of which the lake basins have a similar origin. To determine the morphometric characteristics of unstudied lakes, the HydroLakes and WORDLAKE databases were used, based on remote sensing materials, literature sources and estimates of lake volumes using geostatistical models based on surface topography. The main tool for achieving this goal is a universal parameterized one‑dimensional mathematical model of the hydrothermodynamics of the lake FLake, supplemented by a heat exchange block at the water‑bottom boundary. The model is included in the COSMO forecasts’ system, which is used to compile weather forecasts throughout the Russian Federation as a means of assessing the influence of freshwater lakes on the local climate. To specify climate input data into the model, reanalysis materials from the ERA5 family were used. Thermohydrodynamic calculations were performed for points representative of the considered lake regions within permafrost zones. It is shown that the technique adapted to the conditions of permafrost allows one to evaluate heat exchange in the system atmosphere — ice — water mass — bottom sediments, as well as the vertical distribution of temperature in water and bottom sediments.
Keywords
About the Authors
S. A. KondratyevRussian Federation
St. Petersburg
S. D. Golosov
Russian Federation
St. Petersburg
I. S. Zverev
Russian Federation
St. Petersburg
A. M. Rasulova
Russian Federation
St. Petersburg
V. Yu. Krylova
Russian Federation
St. Petersburg
A. V. Revunova
Russian Federation
St. Petersburg
References
1. Assibey‑Bonsu W. The basic tenets of evaluating the Mineral Resource assets of mining companies, as observed through Professor Danie Krige’s pioneering work over half a century. J.S. Afr. Inst.Min. Metall., 2016, vol. 116, no. 7, pp. 635–643. https://doi.org/10.17159/2411–9717/2016/v116n7a5
2. Babushkina E.V., Rusakov V.S., Rusakov S.V., Shavnina Yu.N. Area typing by geostatistical analysis based on physical and geographical factors. Vestn. Perm. Univ., 2012, no. 1, pp. 33–37. (In Russ.).
3. Bacher J., Wenzig K., Vogler M. SPSS TwoStep Cluster — a First Evaluation. Nürnberg: Arbeits‑und Diskussionspapiere. Universität Erlangen‑Nürnberg, Sozial-wissenschaftliches Institut, Lehrstuhl für Soziologie, 2004.
4. Chen Y., Wu L., Zhang G., Xu Y.J., Tan Z., Qiao S. Assessment of surface hydrological connectivity in an ungauged multi‑lake system with a combined approach using geostatistics and spaceborne SAR observations. Water, 2020, vol. 12, no. 10, art. 2780. https://doi.org/10.3390/w12102780
5. Doklad ob osobennostyakh klimata na territorii Rossiiskoi Federatsii za 2020 god [Report on the Peculiarities of the Climate in the Territory of the Russian Federation for 2020]. Moscow: Rosgidromet, 2021. 104 p.
6. Geokriologiya SSSR. Evropeiskaya territoriya SSSR [Geocryology of the USSR. European Territory of the USSR]. Ershova E.D., Ed. Moscow: Nedra Publ., 1988. 358 p.
7. Golosov S., Kirillin G.A. Parameterized model of heat storage by lake sediments. Environ. Model. Softw., 2010, vol. 25, no. 6, pp. 793–801. https://doi.org/10.1016/j.envsoft.2010.01.002
8. Khazaei B., Read L.K., Casali M, Sampson K.M., Yates D.N. GLOBathy, the global lakes bathymetry dataset. Sci. Data, 2022, vol. 9, no. 1, pp. 1–10. https://doi.org/10.1038/s41597‑022‑01132‑9
9. Ivanov P.V. Classification of the world’s lakes by size and by their average depth. Byull. Leningr. Gos. Univ., 1948, no. 20, pp. 29–36. (In Russ.).
10. Izmailova A.V. Ozera Rossii. Zakonomernosti raspredeleniya, resursnyi potentsial [Lakes of Russia. Patterns of Distribution, Resource Potential]. St. Petersburg: Papirus Publ., 2018. 288 p.
11. Izmailova A.V., Korneenkova N.Yu., Rasulova A.M. Identification of unique lakes using geographic information systems using the example of the Nenets autonomous okrug. Izv. Irkut. Gos. Univ., 2023, vol. 43, pp. 30–45. (In Russ.). https://doi.org/10.26516/2073–3402.2023.43.30
12. Kirillin G., Hochschild J., Mironov D., Terzhevik A., Golosov S., Nützmann G. FLake‑Global: Online lake model with worldwide coverage. Environ. Model. Softw., 2011, vol. 26, no. 5, pp. 683–684. https://doi.org/10.1016/j.envsoft.2010.12.004
13. Krylov V.E., Muravyova N.V. Obshchaya teoriya statistiki: ucheb. posobie [General Theory of Statistics: Textbook]. Vladimir: Izd‑vo Vladimir. Gos. Univ., 2020. 243 p.
14. Kochkov N.V., Ryanzhin S.V. A method of assessing lake morphometric characteristics with the use of satellite data. Water Resour., 2016, vol. 43, no. 1, pp. 15–20. https://doi.org/10.1134/s0097807816010103
15. Korsakova O., Tolstobrov D., Nikolaeva S., Kolka V., Tolstobrova A. Lake Imandra depression in the Late Glacial and early Holocene (Kola Peninsula, north‑western Russia). Baltica, 2020, vol. 33, no. 2, pp. 177–190. https://doi.org/10.5200/baltica.2020.2.5
16. Kravtsova V.I. Distribution of thermokarst lakes of Russia within the permafrost zone. Vestn. Mosk. Univ. Ser. 5: Geogr., 2009, no. 3, pp. 33–42. (In Russ.).
17. Lehner B., Döll P. Development and validation of a global database of lakes, reservoirs and wetlands. J. Hydrol., 2004, vol. 296, no. 1–4, pp. 1–22. https://doi.org/10.1016/j.jhydrol.2004.03.028
18. Messager M., Lehner B., Grill G., Nedeva I., Schmitt O. Estimating the volume and age of water stored in global lakes using a geo‑statistical approach. Nat. Commun., 2016, vol. 7, no. 1, art. 13603. https://doi.org/10.1038/ncomms13603
19. Mironov D.V. Parameterization of Lakes in Numerical Weather Prediction. Description of a Lake Model. COSMO Technical Report No. 11. Offenbach am Main: German Weather Service, 2008.
20. Mironov D., Heise E., Kourzeneva E., Ritter B., Schneider N., Terzhevik A. Implementation of the lake parameterization scheme Flake into the numerical weather prediction model COSMO. Boreal Environ. Res., 2010, vol. 15, pp. 218–230.
21. Natsional’nyi atlas Rossii. Tom 2. Priroda. Ekologiya [National Atlas of Russia. Vol. 2. Nature. Ecology]. Borodko A.V., Kotlyakov V.M., Eds. Moscow: PKO Kartografiya, 2007. 496 p.
22. Nikolaeva S.B., Evzerov V.Ya. On geodynamics of the Kola region in the later Pleistocene and Holocene: the review and result of the studies. Vestn. Voronezh. Gos. Univ., Ser. Geol., 2018, no. 1, pp. 5–14. (In Russ.).
23. Obu J., Westermann S., Bartsch A., et al. Northern Hemisphere permafrost map based on TTOP modelling for 2000–2016 at 1 km2 scale. Earth-Sci. Rev., 2019, vol. 193, pp. 299–316. https://doi.org/10.1016/j.earscirev.2019.04.023
24. Parkin R.A., Kanevskii M.F., Savel’eva E.A., Dem’yanov V.V. Spatiotemporal geostatistics using radioecological monitoring data as an example. Inzh. Ekol., 2005, no. 1, pp. 18–32. (In Russ.).
25. Rumyantsev V.A., Drabkova V.G., Izmailova A.V. Ozera Evropeiskoi chasti Rossii [Lakes of the European Part of Russia]. St. Petersburg: Lema Publ., 2015. 390 p.
26. Rumyantsev V.A., Izmailova A.V., Makarov A.S. Status of the lake fund of the Arctic zone of the Russian Federation. Her. Russ. Acad. Sci., 2021, vol. 91, no. 1, pp. 26–36. https://doi.org/10.1134/s101933162101007X
27. Sarah S., Jeelani G., Ahmed S. Assessing variability of water quality in a groundwater‑fed perennial lake of Kashmir Himalayas using linear geostatistics. J. Earth Syst. Sci., 2011, vol. 120, pp. 399–411. https://doi.org/10.1007/s12040‑011‑0081‑6
28. Shih M.‑Yi, Jheng J.‑W., Lai L.‑F. A Two‑Step method for clustering mixed categroical and numeric data. J. Appl.Eng. Sci., 2010, vol. 13, no. 1, pp. 11–19. https://doi.org/10.6180/jase.2010.13.1.02
29. Svendsen J.I., Alexanderson H., Astakhov V.I., et al. Late Quaternary ice sheet history of northern Eurasia. Quat. Sci. Rev., 2004, vol. 23, pp. 1229–1271. https://doi.org/10.1016/j.quascirev.2003.12.008
30. Szatmári G., Kocsis M., Makó A., Pásztor L., Bakacsi Z. Joint spatial modeling of nutrients and their ratio in the sediments of Lake Balaton (Hungary): A multivariate geostatistical approach. Water, 2022, vol. 14, no. 3, art. 361. https://doi.org/10.3390/w14030361
31. Vechnaya merzlota Kol’skogo poluostova [Permafrost of the Kola Peninsula]. Moscow: Nauka Publ., 1953. 180 p.
32. Winslow L.A., Read J.S., Hanson P.C., Stanley E.H. Does lake size matter? Combining morphology and process modeling to examine the contribution of lake classes to population‑scale processes. Inland Waters, 2015, vol. 5, no. 1, pp. 7–14. https://doi.org/10.5268/IW‑5.1.740
33. Zverev I.S., Golosov S.D., Kondrat’ev S. A., Rasulova A.M. Procedure for remote assessment of the characteristics of unexplored lakes in the continental part of the Russian tundra. Dokl. Earth Sci., 2023, vol. 511, no. 2, pp. 726–731. https://doi.org/10.1134/s1028334X23600779
Review
For citations:
Kondratyev S.A., Golosov S.D., Zverev I.S., Rasulova A.M., Krylova V.Yu., Revunova A.V. Methodology for Remote Assessment of Thermal Characteristics of Lakes in Permafrost Zone of European Russia. Izvestiya Rossiiskoi Akademii Nauk. Seriya Geograficheskaya. 2024;88(6):867-881. (In Russ.) https://doi.org/10.31857/S2587556624060025. EDN: ALARYU