

Features of Transformation of the Natural Waters’ Composition with Changes in the Humidity of Landscapes of the Valdai Hills
https://doi.org/10.31857/S2587556624060031
EDN: AKNNLI
Abstract
The results of 5‑year observations in the warm season of the year (from mid‑April to early November) on the chemical composition of natural waters in the system atmospheric precipitation — undertree water — soil water during a change in the precipitation regime in the catchment area of Gusinoe Lake on the Valdai Hills are summarized. According to Selyaninov’s hydrothermal moisture coefficient, three periods of moisture supply were identified: dry, sufficient hydration, and excess hydration. The article examines the distribution of precipitation intensity during the inter‑sampling periods. Changing periods of moisture does not affect the type of precipitation and undertree water (hydrocarbonate type I, according to Alekin), however, the predominant cation changes from calcium to potassium. The dry period is characterized by maximum mineralization values in the system atmospheric precipitation — unedtree water — soil water, which is due to the washing away of a large amount of dust accumulated in the ground air and settled on the crowns of trees. During the period of excess moisture, the lowest values of mineralization of atmospheric precipitation and sub‑canopy waters are observed (6.2 and 8.3 mg/L, respectively). When the dry period is overly humidified, the pH value of atmospheric precipitation decreases, and the redox potential increases. The change in the pH values of soil waters is influenced by the content of organic acids (correlation coefficient = 0.8). It was revealed that during the dry period and the period of excessive moisture, the intake of calcium into soil waters mainly determines the biotic factor, as well as the intake of potassium in the subsystem undertree waters — soil waters.
Keywords
About the Authors
D. Yu. BaranovRussian Federation
Moscow
T. I. Moiseenko
Russian Federation
Moscow
References
1. Alekin O.A. Osnovy gidrokhimii [Fundamentals of Hydrochemistry]. Leningrad: Gidrometeoizdat, 1970. 444 p.
2. Al‑Khashman O.A. Ionic composition of wet precipitation in the Petra region, Jordan. Atmos. Res., 2005, vol. 78, no. 1–2, pp. 1–12. https://doi.org/10.1016/j.atmosres.2005.02.003
3. Assouline S., Mualem Y. Effect of rainfall‑induced soil seals on the soil water regime: drying interval and subsequent wetting. Transp. Porous Media, 2003, vol. 4, no. 8A, pp. 75–94. https://doi.org/10.1023/A:1023583808812
4. Bernikova T.A., Nagornova N.N., Tsurikova N.A. The possibility of assessing the trophic status of a reservoir by the magnitude of permanganate oxidability (on the example of Lake Vishtynetsky in the Kaliningrad region). Vestn. RUDN, 2013, no. 3, pp. 12–21. (In Russ.).
5. Buchan G.D. Soil temperature regime. In Soil and Environmental Analysis: Physical Methods. Smith K.A., Mullins C.E., Eds. New York: Marcel Dekker, 2001, pp. 539–594. https://doi.org/10.1201/9780203908600
6. Chen J., Xiao G., Kuzyakov Ya., Jenerette G.D., Ma Y., Liu W., Wang Z., Shen W. Soil nitrogen transformation responses to seasonal precipitation changes are regulated by changes in functional microbial abundance in a subtropical forest. Biogeosci., 2014, vol. 14, no. 9, pp. 2513–2525. https://doi.org/10.5194/bg‑14‑2513‑2017
7. Demakov Yu.P., Isaev A.V. The effect of the aerial intake of substances on their circulation in forest ecosystems. Vestn. PGTU, 2015, vol. 1, no. 25, pp. 66–86. (In Russ.).
8. Duce R.A., Hoffman E.J. Chemical fractionation at the air/sea interface. Annu.Rev. Earth Planet. Sci., 1976, vol. 4, pp. 187–228. https://doi.org/10.1146/annurev.ea.04.050176.001155
9. Eludoyin A.O., Ibitoye M.O. Relationship between precipitation and soil water chemistry in an intensively managed clayey soil environment in southwest England: a preliminary study. Int.J. Hydrol. Sci. Technol., 2018, vol. 8, no. 4, pp. 339–348. https://doi.org/10.1504/IJHST.2018.095535
10. Eremina I.D. The chemical composition of atmospheric precipitation in Moscow and the trends of its long-term changes. Vestn. Mosk. Univ., Ser. 5: Geogr., 2019, no. 3, pp. 3–10. (In Russ.).
11. Ganor E., Foner H.A., Brenner J., Neeman E., Lavi N. The chemical composition of aerosols setting in Israel following dust storms. Atmos. Environ., 1991, vol. 25, no. 12, pp. 2665–2670. https://doi.org/10.1016/0960–1686(91)90196‑E
12. Geomorfologiya i chetvertichnye otlozheniya severo-zapada evropeiskoi chasti SSSR (Leningradskaya, Pskovskaya i Novgorodskaya oblasti) [Geomorphology and Quaternary deposits of the North‑West of European Part of the USSR (Leningrad, Pskov and Novgorod regions)]. Malakhovskii D.B., Markov K.K., Eds. Leningrad: Nauka Publ., 1969. 256 p.
13. Gombos M., Kandra B., Tall A., Pavelková D. Analysis of non‑rainfall periods and their impacts on the soil water regime. In Hydrology — the Scince of Water. Javaid, M.S., Eds. Ebook, 2019, pp. 1–19. https://doi.org/10.5772/intechopen.82399
14. Johnson S.L., Kuske C.R., Carney T.D., Housman D.C., Gallegos‑Graves L.V., Belnap J. Increased temperature and altered summer precipitation have differential effects on biological soil crusts in a dryland ecosystem. Glob. Change Biol., 2012, vol.18, no. 8, pp. 2583–2593. https://doi.org/10.1111/j.1365–2486.2012.02709.x
15. Kelishadi H., Mosaddeghi M.R., Ayoubi S., Mamedov A.I. Effect of temperature on soil structural stability as characterized by high energy moisture characteristic method. Catena, 2018, vol. 170, no. 2, pp. 290–304. https://doi.org/10.1016/j.catena.2018.06.015
16. Khimicheskii sostav pochvennykh vod khvoinykh lesov srednei taigi Karelii: mater. nauch. konf. [Chemical Composition of Soil Waters of Coniferous Forests of the Middle Taiga of Karelia. Materials of the Sci. Conf.]. Degteva S.V., Litvinets S.G., Ashichmina T.Ya., Domracheva L.I., et al., Eds. Petrozavodsk: Raduga‑PRESS Publ., 2016. 447 p.
17. Klassifikatsiya i diagnostika pochv Rossii [Classification and Diagnostics of Soils in Russia]. Dobrovolskii G.V., Eds. Smolensk: Oikumena Publ., 2004. 342 p.
18. Kotova E.I. Formation of the chemical composition of precipitation in the north of the European territory of Russia. Vestn. Sever. Arktich. Fed. Univ., Ser. Estest. Nauki, 2012, no. 4, pp. 116–122. (In Russ.).
19. Migliavacca D., Teixeira E.C., Wiegand F., Machado A., Sanchez J. Atmospheric precipitation and chemical composition of an urban site, Guaiba hydrographic basin, Brazil. Atmos. Environ., 2005, vol. 39, no. 10, pp. 1829–1844. https://doi.org/10.1016/j.atmosenv.2004.12.005
20. Neilsen G.H., Stevenson D.S. Leaching of soil calcium, magnesium and potassium in irrigated orchard lysimeters. Soil Sci.Soc. Am. J., 1983, vol. 47, no. 4, pp. 692–696. https://doi.org/10.2136/sssaj1983.03615995004700040018x
21. Nielsen U.N., Ball B.A. Impacts of altered precipitation regimes on soil communities and biogeochemistry in arid and semi‑arid ecosystems. Glob. Change Biol., 2014, vol. 21, no. 4, pp. 1407–1421. https://doi.org/10.1111/gcb.12789
22. Orlov A.S., Bezuglova O.S. Biogeokhimiya [Biogeochemistry]. Rostov‑on‑Don: Feniks Publ., 2020. 320 p.
23. Petrov E.G., Berezhnaya L.I., Kachanovskii I.M., Korotkevich N.A. Ekologicheskii rezhim v sosnovykh biogeotsenozakh [Ecological Regime in Pine Biogeocenoses]. Minsk: Nauka i tekhnika Publ., 1998. 160 p.
24. Pervova N.E., Evdokimova T.I. Composition of soil solutions in the subzone of the southern taiga. Pochvoved., 1984, no. 1, pp. 7–15. (In Russ.).
25. Popenda A. Effect of redox potential on heavy metals and As behavior in dredged sediments. Desalin. Water Treat., 2014, vol. 52, no. 19–21, pp. 1–10. http://dx.doi.org/10.1080/19443994.2014.887449
26. Selyaninov G.T. On agricultural climate assessment. Tr. Sel’skokhoz. Meteorol., 1928, no. 20, pp. 165–177. (In Russ.).
27. Starr M.R., Lindroos A‑J., Nieminen T.M. Variation in the quality of tension lysimeter soil water samples from a finnish forest soil. Soil Sci., 1985, vol. 140, no. 6, pp. 453–461.
28. Tripolskaja L., Kazlauskaite‑Jadzevi A. Trend analyses of percolation of atmospheric precipitation due to climate change: case study in Lithuania. Agron. J., 2022, vol. 12, no. 8, pp. 1–15. https://doi.org/10.3390/agronomy12081784
29. Turner D.P., van Broekhuizen H.J. Nutrient leaching from conifer needles in relation to foliar apoplast cation exchange capacity. Environ. Pollut., 1992, vol. 75, no. 3, pp. 259–63. https://doi.org/10.1016/0269–7491(92)90124‑s
30. Vadassery J., Reichelt M., Hause B., Gershenzon J., Boland W., Mithufe A. CML42‑mediated calcium signaling coordinates responses to Spodoptera herbivory and abiotic stresses in Arabidopsis. Plant. Physiol., 2012, vol. 159, no. 3, pp. 1159–1175. http://dx.doi.org/10.1104/pp.112.198150
31. Várallyay G. The impact of climate change on soils and on their water management. Agron. Res., 2010, vol. 8, no. 7, pp. 385–396.
32. Vanguelova E.I., Benham S., Pitman R., Moffat A.J., Broadmeadow M., et al. Chemical fluxes in time through forest ecosystems in the UK — soil response to pollution recovery. Environ. Pollut., 2009, vol. 158, no. 5, pp. 1857–1869. https://doi.org/10.1016/j.envpol.2009.10.044
33. Uchvatov V.P. Features of soil and groundwater of the Priokskaya zandra‑alluvial plain. Pochvoved., 1985, no. 6, pp. 55–65. (In Russ.).
34. Uchvatov V.P. Landscape‑ecological‑geochemical indicators of natural background processes. Melior. Rekultiv. Ekol., 2009, no. 2, pp. 5–15. (In Russ.).
Review
For citations:
Baranov D.Yu., Moiseenko T.I. Features of Transformation of the Natural Waters’ Composition with Changes in the Humidity of Landscapes of the Valdai Hills. Izvestiya Rossiiskoi Akademii Nauk. Seriya Geograficheskaya. 2024;88(6):882-892. (In Russ.) https://doi.org/10.31857/S2587556624060031. EDN: AKNNLI