Preview

Известия Российской академии наук. Серия географическая

Расширенный поиск
Доступ открыт Открытый доступ  Доступ закрыт Только для подписчиков

Пространственно-временная изменчивость эмиссии метана в олиготрофных грядово-мочажинных комплексах Западной Сибири

https://doi.org/10.31857/S2587556625020118

Аннотация

В течение трех лет при помощи статического камерного метода была изучена эмиссия метана с поверхности одного из самых распространенных типов болотных ландшафтов таежной зоны Западной Сибири — грядово-мочажинного комплекса (ГМК). Обнаружена значительная пространственная изменчивость потоков СН4 между элементами ГМК — грядой и мочажиной (от 60 до 74% в июле и от 20 до 50% в сентябре). Временная изменчивость играет не менее важную роль и является откликом на изменение температуры торфяных залежей. На мочажине обнаружена изменчивость суточного цикла метана, которая на 34–64% объясняется изменчивостью температуры торфяной залежи на глубине от 2 до 15 см. На гряде ГМК суточного цикла не обнаружено, однако изменчивость потоков метана в течение летне-осеннего периода на 46% объясняется температурой на глубине 30 и 40 см. В работе обсуждаются возможные причины пространственно-временной изменчивости СН4 с поверхности элементов ГМК. Результаты пространственно-временного анализа показали, что не дифференцированный разовый отбор пробы и последующая экстраполяция этого результата на сутки и сезон может дать завышенную оценку, если не учитывать влияние текущей температуры, а также положения в микрорельефе и характера растительности, что в конечном итоге может привести как к переоценке, так и к недооценке эмиссии СН4 .

Об авторах

Е. Э. Веретенникова
Институт мониторинга климатических и экологических систем СО РАН; Сибирский государственный медицинский университет
Россия

Томск



Е. А. Дюкарев
Институт мониторинга климатических и экологических систем СО РАН; Югорский государственный университет
Россия

Томск

Ханты-Мансийск



Список литературы

1. Дюкарев Е.А., Алексеева М.Н., Головацкая Е.А. Исследования растительного покрова болотных экосистем по спутниковым данным // Исследования Земли из Космоса. 2014. № 2. С. 38–51. https://doi.org/10.7868/S0205961417020014

2. Дьячкова А.В., Давыдов Д.К., Фофонов А.В., Краснов О.А., Головацкая Е.А., Симоненков Д.В., Nakayama T., Максютов Ш.Ш. Влияние аномальных факторов среды на эмиссию метана на Бакчарском болоте в районе пос. Плотниково летом 2018 г. // Оптика атмосферы и океана. 2019. Т. 32. № 6. С. 482–489. https://doi.org/10.15372/AOO20190611

3. Калюжный И.Л., Лавров С.А., Решетников А.И., Парамонова Н.Н., Привалов В.И. Эмиссия метана на олиготрофном болотном массиве северо-запада России // Метеорология и Гидрология. 2009. № 1. С. 53–67.

4. Киселев М.В., Дюкарев Е.А., Воропай Н.Н. Сезонно-мерзлый слой болот южно-таежной зоны Западной Сибири // Криосфера Земли. 2019. Т. XXIII. № 4. C. 3–15. https://doi.org/10.21782/KZ1560-7496-2019-4(3-15)

5. Клепцова И.Е., Глаголев М.В., Филиппов И.В., Максютов Ш.Ш. Эмиссия метана из рямов и гряд средней тайги Западной Сибири // Динамика окружающей среды и глобальные изменения климата. 2010. Т. 1. № 1. С. 66–76. https://doi.org/10.17816/edgcc1166-76

6. Курьина И.В., Веретенникова Е.Э. Воздействие климатических изменений на развитие грядово-мочажинного комплекса в голоцене // Изв. РАН. Сер. геогр. 2015. № 2. С. 74–87.

7. Наумов А.В. Дыхание почвы. Новосибирск: Изд-во СО РАН, 2009. 208 с.

8. Сабреков А.Ф., Глаголев М.В., Филиппов И.В., Казанцев В.С., Лапшина Е.Д., Мачида Т., Максютов Ш.Ш. Эмиссия метана из типичных болотных ландшафтов северной и средней тайги Западной Сибири: к “стандартной модели” ВС8 // Вестн. Моск. ун-та. Серия 17: Почвоведение. 2012. № 1. С. 50–59.

9. Терентьева И.Е., Филиппов И.В., Сабреков А.Ф., Глаголев М.В., Курбатова Ю.А., Максютов Ш.Ш. Картографирование таежных болот Западной Сибири на основе дистанционной информации // Изв. РАН. Сер. геогр. 2020. Т. 84. № 6. С. 920–930. https://doi.org/10.31857/S2587556620060102

10. Федоров Ю.А., Гарькуша Д.Н., Шипкова Г.В. Эмисия метана торфяными залежами верховых болот Псковской области // География и природные ресурсы. 2015. № 1. С. 88–97.

11. Bohn T.J., Melton J.R., Ito A., et al. WETCHIMP-WSL: intercomparison of wetland methane emissions models over West Siberia // Biogeosci. 2015. № 11. P. 3321–3349. https://doi.org/10.5194/bg-12-3321-2015

12. Brown M.G., Humphreys E.R., Moore T.R., Roulet N.T., Lafleur P.M. Evidence for a nonmonotonic relationship between ecosystem-scale peatland methane emissions and water table depth // J. Geophys. Res. Biogeosci. 2014. № 119. P. 826–835. https://doi.org/10.1002/2013JG002576.826-835

13. Clymo R.S., Pearce D.M.E. Methane and carbon dioxide production in transport through and efflux from a peatland // Philos. Trans. R. Soc. London. 1995. № 350. P. 249–259.

14. Ding W.X., Cai Z.C., Tsuruta H. Diurnal variation in methane emissions from the stands of Carex lasiocarpa and Deyeuxia angustifolia in a cool temperate freshwater marsh // Atmosph. Environ. 2004. № 38. P. 181–188. https://doi.org/10.1016/j.atmosenv.2003.09.066

15. Drollinger S., Maier A., Glatzel S. Interannual and seasonal variability in carbon dioxide and methane fluxes of a pine peat bog in the Eastern Alps, Austria // Agricult. Forest Meteorol. 2019. № 275. P. 69–78. https://doi.org/10.1016/j.agrformet.2019.05.015

16. Duan X., Wang X., Mu Y., Ouyang Z. Seasonal and diurnal variations in methane emissions from Wuliangsu Lake in arid regions of China // Atm. Environ. 2005. № 39. P. 4479–4487. https://doi.org/10.1016/j.atmosenv.2005.03.045

17. Frenzel P., Karofeld E. CH4 emission from a hollow-ridge complex in a raised bog: the role of CH4 production and oxidation // Biogeochem. 2000. Vol. 51. P. 91–112.

18. Glagolev M., Kleptsova I., Filippov I., Maksyutov S., MacHida T. Regional methane emission from West Siberia mire landscapes // Environ. Res. Let. 2011. Vol. 6. P. 045214. https://doi.org/10.1088/1748-9326/6/4/045214

19. Greenup A.L., Bradford M.A., McNamara N.P., Ineson P., Lee J.A. The role of Eriophorum vaginatum in CH4 flux from an ombrotrophic peatland // Plant and Soil. 2000. Vol. 227. P. 265–272.

20. Hommeltenberg J., Mauder M., Drösler M., Heidbach K., Werl P., Schmid H.P. Ecosystem scale methane fluxes in a natural temperate bog-pine forest in southern Germany // Agricult. Forest Meteorol. 2012. № 198–199. P. 273–284. https://doi.org/10.1016/j.agrformet.2014.08.017

21. Joabsson A., Christensen T., Wallen B. Vascular plant controls on methane emissions from northern peatforming wetlands // Trends Ecol. Evol. 1999. № 14. P. 385–388.

22. Juutinen S., Alm J., Larmola T., Saarnio S., Martikainen P.J., Silvola J. Stand-specific diurnal dynamics of CH4 fluxes in boreal lakes: Patterns and controls // J. Geophys. Res. 2004. № 109. D19313. https://doi.org/10.1029/2004JD004782

23. Kim H.S., Maksyutov S., Glagolev M.V., Machida T., Patra P.K., Sudo K., Inoue G. Evaluation of methane emissions from West Siberian wetlands based on inverse modeling // Environ. Res. Let. 2011. № 6. P. 035201. https://doi.org/10.1088/1748-9326/6/3/035201

24. Koch S., Jurasinski G., Koebsch F., Koch M., Glatzel S. Spatial Variability of Annual Estimates of Methane Emissions in a Phragmites Australis (Cav.) Trin. ex Steud. Dominated Restored Coastal Brackish Fen // Wetlands. 2014. № 34. P. 593–602. https://doi.org/10.1007/s13157-014-0528-z

25. Korkiakoski M., Tuovinen J-P., Aurela M., Koskinen M., Minkkinen K., Ojanen P., Penttilä T., Rainne J., Laurila T., Lohila A. Methane exchange at the peatland forest floor — automatic chamber system exposes the dynamics of small fluxes // Biogeosci. 2017. № 14. P. 1947–1967. https://doi.org/10.5194/bg-14-1947-2017

26. Korrensalo A., Mammarella I., Alekseychik P., Vesala T., Tuittila E.S. Plant mediated methane efflux from a boreal peatland complex // Plant Soil. 2022. № 471. P. 375–392.

27. Lai D.Y.F., Moor T.R., Roulet N.T. Spatial and temporal variations of methane flux measured by antechambers in a temperate ombrotrophic peatland // J. Geophys. Res. Biogeosci. 2014. № 119. P. 864–880. https://doi.org/10.1002/2013JG002410

28. Long K.D., Flanagan L.B., Cai T. Diurnal and seasonal variation in methane emissions in a northern Canadian peatland measured by eddy covariance // Glob. Change Biol. 2010. № 16. P. 2420–2435. https://doi.org/10.1111/j.1365-2486.2009.02083.x

29. Mikhaylov O.A., Miglovets M.N., Zagirova S.V. Vertical methane fluxes in mezooligotrophic boreal peatland in European Northeast Russia // Contemp. Probl. Ecol. 2015. Vol. 8. № 3. P. 368–375. https://doi.org/10.1134/S1995425515030099

30. Mikkelä C., Sundh I., Svensson B.H., Nilsson M. Diurnal variation in methane emission in relation to the water table, soil temperature, climate and vegetation cover in a Swedish acid mire // Biogeochem. 1995. № 28. P. 93–114.

31. Morin T.H., Bohrer G., Naor-Azrieli L., Mesi S., Kenny W.T., Mitsch W.J., Schäfer K.V.R. The seasonal and diurnal dynamics of methane flux at a created urban wetland // Ecol. Eng. 2014. № 72. P. 74–83. https://doi.org/10.1016/j.ecoleng.2014.02.002

32. Morrissey L.A., Zobel D.B., Livingston G.P. Significance of stomatal control on methane release from Carexdominated wetlands // Chemosphere. 1993. № 26. P. 339–355.

33. Nadeau D.F., Rousseau A.N., Coursolle C., Margolis H.A., Parlange M.B. Summer methane fluxes from a boreal bog in northern Quebec, Canada, using eddy covariance measurements // Atmos. Environ. 2013. № 81. P. 464–474. https://doi.org/10.1016/j.atmosenv.2013.09.044

34. Pavelka M., Acosta M., Kiese R., et al. Standardisation of chamber technique for CO2 , N2 O and CH4 fluxes measurements from terrestrial ecosystems // Int. Agrophys. 2018. № 32. P. 569–587. https://doi.org/10.1515/intag-2017-0045

35. Peregon A., Maksyutov S., Yamagata Y. An image-based inventory of the spatial structure of West Siberian wetlands // Environ. Res. Let. 2009. Vol. 4. P. 045014. https://doi.org/10.1088/1748-9326/4/4/045014

36. Rinne J., Riutta T., Pihlatie M., Aurela M., Haapanala S., Tuovinen J.-P., Tuittila E.-S., Vesala T. Annual cycle of methane emission from a boreal fen measured by the eddy covariance technique // Tellus. 2007. № B 59. P. 449–457. https://doi.org/10.1111/j.1600-0889.2007.00261.x

37. Rinne J., Tuittila E.S., Peltola O., Li X., Raivonen M., Alekseychik P., Haapanala S., Pihlatie M., Aurela M., Mammarella I., Vesala T. Temporal Variation of Ecosystem Scale Methane Emission From a Boreal Fen in Relation to Temperature, Water Table Position, and Carbon Dioxide Fluxes // Glob. Biogeoch. Cycles. 2017. № 32. P. 1087–1106. https://doi.org/10.1029/2017GB005747

38. Saarnio S., Alm J., Martikainen P.J., Silvola J. Effects of raised carbon dioxide on potential methane production and oxidation in, and methane emission from a boreal mire // J. Ecol. 1998. № 86. P. 261–268. Sabrekov A.F., Glagolev M.V., Kleptsova I.E., Machida T., Maksyutov S.S. Methane emission from bog complexes of the West Siberian taiga // Eurasian Soil Sci. 2013. Vol. 46–12. P. 1182–1193.

39. Sabrekov A.F., Filippov I.V., Dyukarev E.A., Zarov E.A., Kaverin A.A., Glagolev M.V., Terentieva I.E., Lapshina E.D. Hot spots of methane emission in West Siberian middle taiga wetlands physically disturbed by petroleum extraction activities // Environ. Dynamics and Global Climate Change. 2022. Vol. 13. № 3. P. 142–155.

40. Sabrekov A.F., Runkle B.R.K., Glagolev M.V., Kleptsova I.E., Maksyutov S.S. Seasonal variability as a source of uncertainty in the West Siberian regional CH4 flux upscaling // Iop: Environ. Res. Let. 2014. № 9. P. 045008. https://doi.org/10.1088/1748-9326/9/4/045008

41. Sebacher D.J., Harriss R.C., Barlett K.B. Methane emissions to the atmosphere through aquatic plants // J. of Environ. Quality. 1985. № 14. P. 40–46.

42. Shannon R.D., White J.R., Lawson J.E., Gilmour B.S. Methane efflux from emergent vegetation in peatlands // J. Ecol. 1996. № 84. P. 239–246.

43. Terentieva I.E., Glagolev M.V., Lapshina E.D., Sabrekov A.F., Maksyutov S. Mapping of West Siberian taiga wetland complexes using Landsat imagery: implications for methane emissions // Biogeosciences. 2016. Vol. 13. Р. 4615–4626.

44. Thomas K.L., Benstead J., Davies K.L., Lloyd D. Role of wetland plants in the diurnal control of CH4 and CO2 fluxes in peat // Soil Biol. Biochem. 1996. № 28. P. 17–23. https://doi.org/10.1016/0038-0717(95)00103-4

45. Veretennikova E.E., Dyukarev E.A. Comparison of methane fluxes of open and forested bogs of the southern taiga zone of Western Siberia // Boreal Environ. Res. 2021. № 26. Р. 43–59. Whiting G.J., Chanton J.P. Plant-dependent CH4 emission in a subarctic Canadian fen // Global Biogeochem. Cycles. 1992. № 6. P. 225–231.

46. Whiting G.J., Chanton J.P. Control of the diurnal pattern of methane emission from emergent aquatic macrophytes by gas transport mechanisms // Aquat. Bot. 1996. № 54. Р. 237–253. https://doi.org/10.1016/0304-3770(96)01048-0

47. Yvon-Durocher G., Allen A.P., Bastviken D., Conrad R., Gudasz C., St-Pierre A., Thanh-Duc N., del Giorgio P.A. Methane fluxes show consistent temperature dependence across microbial to ecosystem scales // Nature. 2014. № 507. Р. 488–491. https://doi. org/10.1038/nature13164.


Рецензия

Для цитирования:


Веретенникова Е.Э., Дюкарев Е.А. Пространственно-временная изменчивость эмиссии метана в олиготрофных грядово-мочажинных комплексах Западной Сибири. Известия Российской академии наук. Серия географическая. 2025;89(2):297-312. https://doi.org/10.31857/S2587556625020118

For citation:


Veretennikova E.E., Dyukarev E.A. Spatial and Temporal Variability of Methane Emissions in the Oligotrophic Ridge-Hollow Complex of Western Siberia. Izvestiya Rossiiskoi Akademii Nauk. Seriya Geograficheskaya. 2025;89(2):297-312. (In Russ.) https://doi.org/10.31857/S2587556625020118

Просмотров: 5


ISSN 2587-5566 (Print)
ISSN 2658-6975 (Online)