Preview

Izvestiya Rossiiskoi Akademii Nauk. Seriya Geograficheskaya

Advanced search

Day and Night Cloudiness Using Satellite Data from Different Sources

https://doi.org/10.15356/0373-2444-2015-6-48-60

Abstract

Day-time and night-time cloudiness and their difference were assessed based on various satellite data (AIRS-LMD, CERES, MODIS, CALIPSO-GOCCP, PATMOS-x) and surface observations. It was found that day-time cloudiness prevails over land and over the entire Northern Hemisphere while night-time cloudiness prevails over the ocean and over the Southern Hemisphere, moreover difference between cloudiness over land and over the ocean (and consequently over both hemispheres) is higher at the nighttime.
Regionally, difference between day-time and night-time cloudiness over land is up to 20–40%, mostly over mountain regions and midlatitudes. Over the ocean, night-time cloudiness prevails in low latitudes in summer (mostly over the eastern parts of the oceans) where it is up to 15–20% more than day-time cloudiness. A disagreement between different data is noted over the vast equatorial and highmountain regions in Eurasia, Africa, South America, Australia, North Pacifi c and North Atlantic. Particularly,
some data display that day-time cloudiness prevails in that regions, other data shows the opposite. It was shown, that time of observations can affect the estimate of total cloudiness. Though, only day-time measurements lead to an overestimation of cloudiness over land (up to 20% of the total daily cloudiness) and underestimation over the ocean. On the contrary, only night-time observations (or observations at the morning) lead to an overestimation of cloudiness over the ocean (up to 5–7%) and underestimation over land (up to 8–10%). Regional differences are even more suffi cient.

About the Author

A. V. Chernokulsky
Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences, Moscow, Russia
Russian Federation


References

1. Кобзарь А.И. Прикладная математическая статистика. Для инженеров и научных работников. М.: Физматлит, 2006. 816 с.

2. Марчук Г.И., Кондратьев К.Я., Козодеров В.В., Хворостьянов В.И. Облака и климат. Л.: Гидрометеоиздат, 1986. 512 с.

3. Облака и облачная атмосфера. Справочник / Под ред. И.П. Мазина, А.Х. Хргиана. Л.: Гидрометиздат, 1989. 647 с.

4. Чернокульский А.В. Климатология облачности в арктических и субарктических широтах по спутниковым и наземным наблюдениям и данным реанализа // Солнечно-земная физика. 2012. Т. 21. С. 73–78.

5. Чернокульский А.В., Мохов И.И. Сравнение современных глобальных климатологий облачности // Современные проблемы дистанционного зондирования Земли из космоса. 2009. Т. 6. № 2. С. 235–243.

6. Чернокульский А.В., Мохов И.И. Сравнительный анализ характеристик глобальной и зональной облачности по различным спутниковым и наземным наблюдениям // Исследования Земли из космоса. 2010. № 3. С. 12–29.

7. Ackerman S.A., Strabala K.I., Menzel W.P., Frey R.A., Moeller C.C., and Gumley L.E. Discriminating clear sky from clouds with MODIS // J. of Geophys. Res.: Atmospheres. 1998. Vol. 103. No. D24. P. 32141–32157.

8. Bergman J.W. and Salby M.L. Diurnal Variations of Cloud Cover and Their Relationship to Climatological Conditions // J. Climate. 1996. Vol. 9. No. 11. P. 2802– 2820.

9. Cairns B. Diurnal variations of cloud from ISCCP data // Atmos. Res. 1995. Vol. 37. No. 1. P. 133–146.

10. Chepfer H., Bony S., Winker D., Cesana G., Dufresne J.-L., Minnis P., Stubenrauch C.J., and Zeng S. The GCM-Oriented CALIPSO Cloud Product (CALIPSO-GOCCP) // J. Geophys. Res. 2010. Vol. 115. P. D00H16.

11. Chernokulsky A.V., Bulygina O.N., and Mokhov I.I. Recent variations of cloudiness over Russia from surface daytime observations // Environmental Research Letters. 2011. Vol. 6. No. 3. P. 035202.

12. Chernokulsky A. and Mokhov I.I. Climatology of Total Cloudiness in the Arctic: An Intercomparison of Observations and Reanalyses // Adv. Meteorol. 2012. Vol. 2012. No. Article ID 542093. P. 15.

13. Chernokulsky A., Mokhov I.I., and Nikitina N. Winter cloudiness variability over Northern Eurasia related to the Siberian High during 1966–2010 // Environmental Research Letters. 2013. Vol. 8. No. 4. P. 045012.

14. Clouds in the Perturbed Climate System / J. Heintzenberg, R.J. Charlson (ed.). Cambridge, Massachusetts London, England: The MIT Press, 2009. 615 p.

15. Di Girolamo L., Menzies A., Zhao G., Mueller K., Moroney C., and Diner D.J. MISR level 3 cloud fraction by altitude algorithm theoretical basis. Jet Propulsion Laboratory Rep. 2010. JPL D-62358, 24 p.

16. Eastman R. and Warren S.G. A 39-Yr Survey of Cloud Changes from Land Stations Worldwide 1971–2009: Long-Term Trends, Relation to Aerosols, and Expansion of the Tropical Belt // J. of Climate. 2013. Vol. 26. No. 4. P. 1286–1303.

17. Eastman R. and Warren S.G. Diurnal Cycles of Cumulus, Cumulonimbus, Stratus, Stratocumulus, and Fog from Surface Observations over Land and Ocean // J. of Climate. 2014. Vol. 27. No. 6. P. 2386–2404.

18. Eastman R., Warren S.G., and Hahn C.J. Variations in Cloud Cover and Cloud Types over the Ocean from Surface Observations, 1954–2008 // J. of Climate. 2011. Vol. 24. No. 22. P. 5914–5934.

19. Foster M.J. and Heidinger A.K. PATMOS-x: Results from a diurnally corrected 30-yr satellite cloud climatology // J. of Climate. 2013. Vol. 26. No. 2. P. 414425.

20. Frey R.A., Ackerman S.A., Liu Y., Strabala K.I., Zhang H., Key J.R., and Wang X. Cloud Detection with MODIS. Part I: Improvements in the MODIS Cloud Mask for Collection 5 // J. Atmos. Oceanic Technol. 2008. Vol. 25. No. 7. P. 1057–1072.

21. Hahn C.J. and Warren S.G. A Gridded Climatology of Clouds over Land (197196) and Ocean (1954–97) from Surface Observations Worldwide (NDP-026E). Oak Ridge, TN: 2007. 71 p.

22. Hahn C.J., Warren S.G., and London J. The effect of moonlight on observation of cloud cover at night, and application to cloud climatology // J. of Climate. 1995. Vol. 8. P. 1429–1446.

23. Heidinger A.K. CLAVR-x Cloud mask algorithm theoretical basis document (ATBD). Washington, D.C.: 2004. 68 p.

24. Ignatov A., Laszlo I., Harrod E.D., Kidwell K.B., and Goodrum G.P. Equator crossing times for NOAA, ERS and EOS sun-synchronous satellites // Int. J. Remote Sens. 2004. Vol. 25. No. 23. P. 5255–5266.

25. Liu Z., Vaughan M., Winker D., Kittaka C., Getzewich B., Kuehn R., Omar A., Powell K., Trepte C., and Hostetler C. The CALIPSO Lidar Cloud and Aerosol Discrimination: Version 2 Algorithm and Initial Assessment of Performance // Journ. Atmos. Oceanic Technol. 2009. V. 26. No. 7. P. 1198–1213.

26. Minnis P., Sun-Mack S., Young D.F. Heck P.W., Garber D.P., Chen Y.,Spangenberg D.A., Arduini R.F., Trepte Q.Z., Smith W.L., Ayers J.K., Gibson S.C., Miller W.F., Hong G., Chakrapani V., Takano Y., Liou K.-N., Xie Y., and Yang P. CERES Edition-2 Cloud Property Retrievals Using TRMM VIRS and Terra and Aqua MODIS Data - Part I: Algorithms //IEEE Trans. Geosci. Remote Sens. 2011. Vol. 49. No. 11. P. 4374–4400.

27. Mokhov I.I. and Schlesinger M.E. Analysis of global cloudiness: 2. Comparison of ground-based and satellite-based cloud climatologies // J. of Geophys. Res.: Atmospheres (1984–2012). 1994. Т. 99. No. D8. С. 17045–17065.

28. Parol F., Buriez J.C., Vanbauce C., Riedi J., C Labonnote L., Doutriaux-Boucher M., Vesperini M., Seze G., Couvert P., Viollier M., and Brйon F.M. Capabilities of multi-angle polarization cloud measurements from satellite: POLDER results // Adv. Space Res. 2004. Vol. 33. P. 1080–1088.

29. Ramanathan V., Harrison E.F., Minnis P. Barkstrom B.R., Ahmad E., and Hartmann D.L. Cloud-radiative forcing and climate: Results from the Earth Radiation Budget Experiment // Science. 1989. Vol. 243. No. 4887. P. 57–63.

30. Rozendaal M.A., Leovy C.B., Klein S.A. An observational study of the diurnal cycle of marine stratiform cloud // J. of Climate. 1995. Vol. 8. P. 1795–1809.

31. Sayer A.M., Poulsen C.A., Arnold C., Campmany E., Dean S., Ewen G.B.L., Grainger R.G., Lawrence B.N., Siddans R., Thomas G.E., and Watts P.D. Global retrieval of ATSR cloud parameters and evaluation (GRAPE): dataset assessment // Atmos. Chem. Phys. 2011. Vol. 11. P. 3913–3936.

32. Stephens G.L., Li J., Wild M., Clayson C.A., Loeb N.G., Kato S., L’Ecuyer T.S., Stackhouse Jr.P.W., Lebsock M., and Andrews T. An update on Earth’s energy balance in light of the latest global observations // Nature Geosci. 2012. Т. 5. No. 10. С. 691–696.

33. Stubenrauch C.J., Chedin A., Radel G., Scott N.A., and Serrar S. Cloud properties and their seasonal and diurnal variability from TOVS Path-B // J. of Climate. 2006. Vol. 19. P. 5531–5553.

34. Stubenrauch C.J., Cros S., and Lamquin N. Cloud properties from Atmospheric Infrared Sounder and evaluation with Cloud-Aerosol Lidar and InfraredPathfi nder Satellite Observations // J. Geophys. Res. 2008. Vol. 113. P. D00A10.

35. Stubenrauch C.J., Rossow W.B., Kinne S., Ackerman S., Cesana G., Chepfer H., di Girolamo L., Getzewich B., Guignard A., Heidinger A., Maddux B.C., Menzel W.P., Minnis P., Pearl C., Platnick S., Poulsen C., Riedi J., Sun-Mack S., Walther A., Winker D., Zeng S., and Zhao G. Assessment of global cloud datasets from satellites: Project and database initiated by the GEWEX Radiation Panel // Bul. of the American Meteorological Society. 2013. Vol. 94. No. 7. P. 1031–1049.

36. Lingli W.J., Qu X., Xiong X., Hao Y. Xie, and Che N. A preliminary study of Aqua/ MODIS snow coverage continuity with simulated band 6 // Remote Sensing and Modeling of Ecosystems for Sustainability III. Vol. 6298. No. 62981A. DOI: 10.1117/12.68953.

37. Warren S.G., Eastman R., and Hahn C.J. A survey of changes in cloud cover and cloud types over land from surface observations, 1971–96 // J. of Climate. V. 20. No. 4. P. 1–22.

38. Wielicki B.A., Barkstrom B.R., Harrison E.F., Lee III R.B., Louis Smith G., and Cooper J.E. Clouds and he Earth’s Radiant Energy System (CERES): An earth observing system experiment // Bul. of the Amer. Meteorological Soc. 1996. Vol. 77. No. 5. P. 853–868.

39. Winker D.M., Vaughan M.A., Omar A., Hu Y., Powell K.A., Liu Z., Hunt W.H., and Young S.A. Overview of the CALIPSO Mission and CALIOP Data Processing Algorithms // J. Atmos. Oceanic Technol. 2009. Vol. 26. No. 11. P. 2310–2323.

40. Wood R. Stratocumulus Clouds // Monthly Weather Review. 2012. Vol. 140. No. 8. P. 2373–2423.

41. Wylie D. Diurnal cycles of clouds and how they affect polar-orbiting satellite data // Journ. of Climate. 2008. Vol. 21. No. 16. P. 3989–3996.


Review

For citations:


Chernokulsky A.V. Day and Night Cloudiness Using Satellite Data from Different Sources. Izvestiya Rossiiskoi Akademii Nauk. Seriya Geograficheskaya. 2015;(6):48-60. (In Russ.) https://doi.org/10.15356/0373-2444-2015-6-48-60

Views: 727


ISSN 2587-5566 (Print)
ISSN 2658-6975 (Online)