Preview

ORBITAL TUNING OF PALEOCLIMATE GEOTHERMAL RECONSTRUCTIONS

https://doi.org/10.7868/S0373244417030057

Abstract

A new method is presented to increase the dating accuracy of geothermal paleoclimate reconstructions. The method is based on a simultaneous inversion of surface paleotemperatures and changes of ground surface heat flux, and on a comparison of the latter with external radiative forcing variations on long time scales. The developed algorithm is similar to the method of orbital tuning used for isotope temperature chronologies, but has a substantial advantage: for the revision of reconstructed paleoclimate chronologies, two energy characteristics are compared. It promotes adequate accounting the delay of the temperature reaction to changes in external radiative forcing. The presented method works best for the long-period paleoclimate reconstructions (some tens of thousands of years long). The algorithm should be used carefully for the former glaciation regions. The method was tested using ground surface temperature history reconstructed in the Urals for the past 35 kyr. The applying of the orbital tuning of geothermal paleoclimate reconstructions made it possible to achieve the 99% correlation between the ground surface heat flux and insolation changes in time interval of 35–6 kyr BP staying within the natural variability of the thermophysical properties of the rocks.

About the Authors

A. A. Gornostaeva
Institute of Geophysics, Urals Branch, Russian Academy of Sciences, Yekaterinburg
Russian Federation


A. N. Antipin
Institute of Geophysics, Urals Branch, Russian Academy of Sciences, Yekaterinburg
Russian Federation


References

1. Volkov Yu.V., Tartakovsky V.A. The algorithm of chronological series synchronization. Izv. Tomsk. Politeh. Univ., 2009, vol. 315, no. 5, pp. 61–64. (In Russ.)

2. Gornostaeva A.A. The calculation algorithm of ground surface heat flux changes from ground surface temperature changes. Ural’skij Geophys. Vestn., 2014, no. 1, pp. 37–45. (In Russ.)

3. Demezhko D. Yu. Geotermicheskii metod rekonstruktsii paleoklimata (na primere Urala) (Geothermal Method for Paleoclimate Reconstruction (Case Studies from the Urals, Russia). Yekaterinburg: UB RAS, 2001.

4. Demezhko D.Y., Gornostaeva A.A. Reconstructions of long-term ground surface heat flux changes from deepborehole data. Russ. Geol. Geophys., 2014, vol. 55, no. 12, pp. 1841–1846. (In Russ.).

5. Demezhko D. Yu., Gornostaeva A.A. Reconstructio n of ground surface heat flux history in the Urals from geothermal and meteorological data. Geophys. Proces. Biosphere, 2014, vol. 13, no. 4, pp. 21–40. (In Russ.)

6. Demezhko D. Yu., Gornostaeva A.A., Tarkhanov G.V., Esipko O.A. Ground surface temperature reconstruction over the last 30,000 from Onega parametric borehole temperature data. Geophys. Res., 2013, vol. 14, no. 2, pp. 38–48. (In Russ.)

7. Demezhko D.Y., Solomina O.N. Ground surface temperature variations on Kunashir Island in the last 400 years inferred from borehole temperature data and tree-ring records. Dokl. Earth Sci., 2009, vol. 426, no. 2, pp. 240–243. (In Russ.).

8. Metody paleogeograficheskih reconstructsii (Methods of Paleogeographic Reconstructions), Kaplin P.A., Yanina T.A., Ed. Moscow: Moscow State Univ., 2010.

9. Sidorova O.V., Naurzbaev M.M., Vaganov E.A. The dynamics of late Holocene climate in the North Eurasia from Greenland ice cores data and long-term tree-ring chronologies. Izv. Ross. Akad. Nauk, Ser. Geogr., 2007, no. 1, pp. 95–106. (In Russ.)

10. Bender M.L. Orbital tuning chronology for the Vostok climate record supported by trapped gas composition. Earth Planet. Sci. Lett., 2002, no. 204, pp. 275–289.

11. Bennett W.B., Wang J., and Bras R.L. Estimation of global ground heat flux. J. Hydrometeorol., 2008, vol. 9, no. 4, pp. 744–759.

12. Beltrami H. Surface heat flux histories from inversion of geothermal data: Energy balance at the Earth’s surface. J. Geophys. Res.: Solid Earth, 2001, vol. 106, no. B10, pp. 21979–21993.

13. Beltrami H., Smerdon J.E., Pollack H.N., and Huang S. Continental heat gain in the global climate system. Geophys. Res. Lett., 2002, vol. 29, no. 8. pp. 81–83.

14. Berger A., Loutre M.F. Insolation values for the climate of the last 10 million of years. Quat. Sci. Rev., 1991, vol. 10, no. 4, pp. 297–317. http://gcmd.nasa.gov/records/ GCMD_EARTH_LAND_NGDC_PALEOCLIM_ INSOL.html.

15. Bodri L., Cermak V. Borehole climatology. A new method on how to reconstruct climate. Elsevier Science, 2007.

16. Cermak V. Underground temperature and inferred climatic temperature of the past millennium. Palaeogeogr. Palaeoclim. Palaeoecol., 1971, no. 10, pp. 1–19.

17. Dahl-Jensen D., Mosegaard K., Gundestrup N., Clow G.D., Johnsen S. J., Hansen A.W., and Balling N. Past temperatures directly from the Greenland Ice Sheet. Science, 1998, no. 282, pp. 268–271.

18. Demezhko D. Yu., Golovanova I.V. Climatic changes in the Urals over the past millennium – an analysis of geothermal and meteorological data. Climate of the Past, 2007, no. 3, pp. 237–242.

19. Demezhko D.Y., Gornostaeva A.A. Late Pleistocene– Holocene ground surface heat flux changes reconstructed from borehole temperature data (the Urals, Russia). Climate of the Past, 2015, no. 11, pp. 647–652.

20. Demezhko D. Yu., Gornostaeva A.A., Tarkhanov G.V., and Esipko O.A. 30000 years of ground surface temperature and heat flux changes in Karelia reconstructed from borehole temperature data. Bull. Geogr., 2013, no. 6, pp. 7–25.

21. Demezhko D. Yu., Shchapov V.A. 80000 years ground surface temperature history inferred from the temperature-depth log measured in the superdeep hole SG-4 (the Urals, Russia). Global and Planetary Change, 2001, vol. 29, no. 1–2, pp. 219–230.

22. Douglass D.H., Knox R.S. Ocean heat content and Earth’s radiation imbalance. II. Relation to climate shifts. Phys. Lett. A, 2012, vol. 376, no. 14, pp. 1226–1229.

23. Dreyfus G.B., Parrenin F., Lemieux-Dudon B., Durand G., Masson-Delmotte V., Jouzel J., Barnola J.-M., Panno L., Spahni R., Tisserand A., Siegenthaler U., and Leuenberger M. Anomalous flow below 2700m in the EPICA Dome C ice core detected using 18O of atmospheric oxygen measurements. Climate of the Past, 2007, no. 3, pp. 341–353.

24. Durham W.B., Mirkovich V.V., and Heard H.C. Thermal diffusivity of igneous rocks at elevated pressure and temperature. J. Geophys. Res. Solid Earth (1978– 2012), 1987, no. 92, pp. 11615–11634.

25. Fudge T.J., Waddington E.D., Conway H., Lundin J.M.D., and Taylor K. Interpolation methods for Antarctic ice-core timescales: application to Byrd, Siple Dome and Law Dome ice cores. Climate of the Past, 2014, no. 10, pp. 1195–1209, doi:10.5194/cp-10–1195–2014.

26. Gornostaeva A.A., Demezkho D. Yu. Recovery from the Little Ice Age in the Urals and Eastern Europe: Geothermal evidences. Geogr., Env., Sustainability, 2013, vol. 6, no. 01, pp. 29–36.

27. Huang S. 1851–2004 annual heat budget of the continental landmasses. Geophys. Res. Lett., 2006, no. 33, L04707, doi:10.1029/2005GL025300.

28. Huang S., Pollack H.N., and Shen P.-Y. Temperature trends over the past five centuries reconstructed from borehole temperatures. Nature, 2000, vol. 403, pp. 756–758.

29. Lachenbruch A.H., Marshall B.V. Changing climate: Geothermal evidence from permafrost in the Alaska Arctic. Science, 1986, vol. 234, pp. 689–696.

30. Martinson D.G., Pisias N.G., Hays J.D., Imbrie J., Moore T.C., and Shackleton N. J. Age dating and the orbital theory of the ice ages: development of a high-resolution 0–300000 years chronostratigraphy. Quat. Res., 1987, vol. 27, pp. 1–30.

31. Parrenin F., Barnola J.-M., Beer J., Blunier T., Castellano E., Chappellaz J., Dreyfus G., Fische H., Fujita S., Jouzel J., Kawamura K., Lemieux-Dudon B., Loulergue L., Masson-Delmotte V., Narcisi B., Petit J. R., Raisbeck G., Raynaud D., Ruth U., Schwander J., Severi M., Spahni R., Steffensen J.P., Svensson A., Udisti R., Waelbroeck C., and Wolff E. The EDC3 chronology for the EPICA Dome C ice core. Climate of the Past, 2007, no. 3, pp. 485–497. doi:10.5194/cp-3-485-2007.

32. Peixóto J.P., Oort A.H. Physics of climate. Rev. Mod. Phys., 1984, vol. 56, no. 3, pp. 365–429.

33. Pielke Sr.R.A. Heat storage within the Earth system. Bull. Am. Meteorol. Soc., 2003, vol. 84, no. 3, pp. 331–335.

34. Pollack H.N., Huang S., and Smerdon J.E. Five centuries of climate change in Australia: The view from underground. J. of Quat. Sci., 2006, vol. 21, no. 7, pp. 701–706.

35. Shackleton N. The 100,000-year ice-age cycle identified and found to lag temperature, carbon dioxide, and orbital eccentricity. Science, 2000, vol. 289, pp. 1897–1902.

36. Wang J., Bras R.L. Ground heat flux estimated from surface soil temperature. J. Hydrol., 1999, vol. 216, pp. 214–226.


Review

For citations:


Gornostaeva A.A., Antipin A.N. ORBITAL TUNING OF PALEOCLIMATE GEOTHERMAL RECONSTRUCTIONS. Izvestiya Rossiiskoi Akademii Nauk. Seriya Geograficheskaya. 2017;(3):58-64. (In Russ.) https://doi.org/10.7868/S0373244417030057

Views: 393


ISSN 2587-5566 (Print)
ISSN 2658-6975 (Online)