Preview

Izvestiya Rossiiskoi Akademii Nauk. Seriya Geograficheskaya

Advanced search

WAVELET AND CROSS-WAVELET ANALYSIS OF THE SUMS OF  ATMOSPHERIC PRECIPITATION AND SURFACE AIR TEMPERATURE IN EUROPEAN RUSSIA

https://doi.org/10.7868/S0373244417060068

Abstract

Wavelet analysis of time series of surface air temperature and sums of precipitation in some cities of European Russia, with an estimate of the statistical significance of the obtained results is carried out with the purpose of identifying periodicities in the data of station meteorological observations. A cross-wavelet analysis was used to establish a link between variations in series of temperature and precipitation with important climate indices such as the North Atlantic oscillation (NAO), Atlantic multidecade oscillation (AMO) and Arctic oscillation (AO). A number of important cycles in different frequency ranges is identified. Cross-wavelet analysis of the NAO, AO with precipitation and temperature series showed a higher density of links compared to AMO. The strong link of high frequency oscillations in precipitation and temperature of the study area with fluctuations of the NAO, AMO and AO is established that can be determined not only by these climate indices, but the relationship of these Atlantic fluctuations with the El Niño phenomenon. Possibly, mid-frequency oscillations of meteorological data of the area with periods of 7–11 years are the evidence of the link with the fluctuation of the NAO. The established coherence of the index of the AMO and observational data is localized at time intervals before and after 1970, which is consistent with quasi-cyclic changes in the Earth’s climate.

About the Authors

Denis Yu. Vasil’ev
Ufa State Aviation Technical University
Russian Federation
Ufa


Oleg K. Babkov
Ufa State Aviation Technical University
Russian Federation
Ufa


Ekaterina S. Kochetkova
Russian State Hydrometeorological University
Russian Federation
St. Petersburg


Vladimir A. Semenov
Institute of Atmospheric Physics, Russian Academy of Sciences; Institute of Geography, Russian Academy of Sciences
Russian Federation
Moscow


References

1. Astaf’eva N.M. Wavelet analysis: basic theory and some applications. Phys. Usp., 1996, vol. 166, no. 11, pp. 1145–1170. DOI: 10.1070/PU1996v039n11ABEH000177.

2. Vasil’ev D. Yu., Lukmanov R.L., Ferapontov Yu.I., Chuvyrov A.N. Periodicity in the hydrometeorological parameters of Bashkiria. Dokl. Earth Sci., 2013, vol. 448, no. 1, pp. 131–134. DOI:10.1134/S1028334X12110165.

3. Vasil’ev D. Yu., Sivohip J.T., Chibilev A.A. Climate dynamics and interdecadal discharge fluctuations in the Ural river basin. Dokl. Earth Sci., 2016, vol. 469, no. 1, pp. 102–107. DOI:10.1134/S1028334X16070096.

4. Vasil’ev D. Yu., Ferapontov Yu.I. Tends in the fluctuations of near surface air temperature (a case study of Bashkiria). Izv. Akad. Nauk, Ser. Geogr., 2015, no. 1, pp. 77–86. (In Russ.).

5. Klyatskin V.I. Modern methods for the statistical description of dynamical stochastic systems. Phys. Usp., 2009, vol. 179, no. 5, pp. 547–553.DOI:10.3367/UFNe.0179.200905j.0547.

6. Mokhov I.I., Smirnov D.A. Diagnostics of a cause-effect relation between solar activity and the Earth’s global surface temperature. Izv. Atmos. Ocean. Phys., 2008, vol. 44, no. 3, pp. 283–293.

7. Mokhov I.I., Smirnov D.A., Karpenko A.A. Assessment of the relationship of changes of the global surface air temperature with different natural and anthropogenic factors based on observations. Dokl. Earth Sci., 2012, vol. 443, no. 2, pp. 225–231. DOI: 10.1134/S1028334X12030178.

8. Nesterov E.S. Influence of the Surface water temperature and heat flux in the North Atlantic on the atmospheric circulation. Russ. Meteorol. Hydrol., 2009, no. 1, pp. 39–46. DOI:10.3103/S106837390901004X.

9. Popova V.V. Structure of perennial fluctuations of atmospheric precipitation at the Russian Plaine. Izv. Akad. Nauk, Ser. Geogr., 1999, no. 3, pp. 40–50. (In Russ.).

10. Semenov V.A., Mokhov I.I., Latif M. Influence of the ocean surface temperature and sea ice concentration on regional climate changes in Eurasia in recent decades. Izv. Atmos. Ocean. Phys., 2012, vol. 48, no. 4, pp. 1–18. DOI: 10.1134/S0001433812040135.

11. Assessment repot on climate change and its impact on the territory of the Russian Federation, vol. 1. Roshydromet, 2008. 278 p. (In Russ.).

12. Chapa S.R., Rao V.B., Prasad G.S.S.D. Application of wavelet transform to meteosat-derived cold cloud index data over South America. Mon. Weather Rev., 1998, 126, pp. 2466–2481.

13. Chekroun M.D., Kondrashov D., Ghil M. Predicting stochastic systems by noise sampling, and application to the El Niño-Southern Oscillation. PNAS, 2011, vol. 108, no. 29, pp. 11766–11771. DOI:10.1073/pnas.1015753108.

14. Daubechies I. Ten Lectures on Wavelets. Society for Industrial and Applied Mathematics, 1992. 357 p.

15. Ionita M., Lohmann G., Rimbu N., Scholz P. Dominant modes of Diurnal Temperature Range variability over Europe and their relationships with large-scale atmospheric circulation and sea surface temperature anomaly patterns. J. Geophys. Res., 2012, vol. 117, D15111. DOI:10.1029/2011JD016669.

16. Gray L.J., Beer J., Geller M., et al. Solar influences on climate. Rev. Geophys., 2010. 48. RG4001. DOI:10.1029/2009RG000282.

17. Grinsted A., Moore J.C., Jevrejeva S. Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Processes Geophys., 2004, vol. 11, pp. 561–566. SRef-ID:1607-7946/npg/2004-11-561.

18. Hurrell J.W. Decadal trends in the North Atlantic Oscillation: Regional temperatures and precipitation. Science 1995, vol. 269, pp. 676–679.

19. Chronin A.J., Morzfeld M. Conditions for successful data assimilation. J. Geophys. Res., 2013, vol. 118, 11, pp. 511–533. DOI:10.1002/2013JD019838, 2013.

20. Kerr R.A. A north Atlantic climate pacemaker for the centuries. Science, 2000, vol. 288, pp. 1984–1986.

21. Mak M. Orthogonal wavelet analysis: Interannual variability in the sea surface temperature. Bull. Amer. Meteor. Soc., 1995, 76, 11, pp. 2179–2186.

22. Maraun D., Kurths J. Cross wavelet analysis: significance testing and pitfalls. Nonlinear Processes Geophys., 2004, vol. 11, pp. 505–514. SRef-ID:1607-7946/npg/2004-11-505.

23. Maraun D., Kurths J., Holschneider M. Nonstationary Gaussian processes in wavelet domain: Synthesis, estimation, and significance testing. Phys. Rev., 2007. E75. DOI: 10.1103/PhysRevE.75.016707.

24. Meyers S.D., Kelly B.G., O’Brien J.J. An introduction to wavelet analysis in oceanography and meteorology: With application to the dispersion of Yanai waves. Mon. Weather Rev., 1993, 121, pp. 2858–2866.

25. Minobe T., Shouji A. Maximal wavelet filter and its application to bidecadal oscillation over the Northern Hemisphere through the twentieth century. J. Climate, 2002, 15, pp. 1064–1075.

26. Moberg A., Sonechkin D.M., Holmgren K., Datsenko N.M., Karlen W. Highly variable Northern Hemisphere temperatures reconstructed from low- and highresolution proxy data. Nature, 2005, 433, pp. 613–617.

27. Nyberg J., Malmgren B.A., Winter A., Jury M.R., Kilbourne K.H., Quinn T.M. Low Atlantic hurricane activity in the 1970s and 1980s compared to the past 270 years. Nature, 2007, vol. 447, pp. 698–701. DOI: 10.1038/nature05895.

28. Rayner N.A., Parker D.E., Horton E.B., Folland C.K., Alexander L.V., Rowell D.P., Kent E.C., Kaplan A. Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century. J. Geophys. Res., 2003. 108 (D14). 4407. DOI:10.1029/2002JD002670.

29. Rossi A., Massei N., Laignel B. A synthesis of the timescale variability of commonly used climate indices using continuous wavelet transform. Global Planetary Change, 2011, vol. 78, pp. 1–13.

30. Schlesinger M.E., Ramankutty N. An oscillation in the global climate system of period 65–70 years. Nature, 1994, vol. 367, pp. 723–726.

31. Strong K., Saba J., Kucera T. Understanding space weather: the Sun as a variable star. Bull. Amer. Meteor. Soc., 2012, vol. 93, no. 9, pp. 1327–1335. DOI: 10.1175/BAMS-D-11-00179.1.

32. Sutton R.T., Hodson D.L.R. Atlantic ocean forcing of North American and European summer climate. Science, 2005, vol. 309, pp. 115–118. DOI:10.1126/science.1109496.

33. Torrence C. and Campo G.P. A practical guide to wavelet analysis. Bull. Amer. Meteor. Soc., 1998, vol. 79, pp. 61–78.

34. Tung K-K., Zhou J. Using data to attribute episodes of warming and cooling in instrumental records. PNAS, 2013, vol. 110, no. 6, pp. 2058–2063. DOI:10.1073/pnas.1212471110.

35. Vicente-Serrano S.M., Lopez-Moreno J.I., Nonstationary influence of the North Atlantic Oscillation on European Precipitation. J. Geophys. Res., 2008, vol. 113, D20120. DOI:10.1029/2008JD010382.

36. Wang H., Kumar A., Wang W., Jha B.U.S. summer precipitation and temperature patterns following the peak phase of El Niño. J. Climate., 2012, vol. 25, 20, pp. 7204–7215. DOI:10.1175/JCLI-D-11-00660.1.


Review

For citations:


Vasil’ev D.Yu., Babkov O.K., Kochetkova E.S., Semenov V.A. WAVELET AND CROSS-WAVELET ANALYSIS OF THE SUMS OF  ATMOSPHERIC PRECIPITATION AND SURFACE AIR TEMPERATURE IN EUROPEAN RUSSIA. Izvestiya Rossiiskoi Akademii Nauk. Seriya Geograficheskaya. 2017;(6):63-77. (In Russ.) https://doi.org/10.7868/S0373244417060068

Views: 743


ISSN 2587-5566 (Print)
ISSN 2658-6975 (Online)