Preview

Izvestiya Rossiiskoi Akademii Nauk. Seriya Geograficheskaya

Advanced search

VERIFICATION OF THE DNDC MODEL FOR ESTIMATION OF CARBON AND NITROGEN EXCHANGE PARAMETERS IN ARABLE SOILS IN CENTRAL NON-CHERNOZEM ZONE

https://doi.org/10.1134/S2587556618040155

Abstract

The approbation of the DNDC (DeNitrification-DeComposition) model was done. The aim of research was to evaluate an opportunity of model using for analysis of carbon and nitrogen exchange and greenhouse gases dynamics in agroecosystems of arable soils in the Central Non-Chernozem zone in Russia. The verification of the model on the base of literature data detected that, as a rule, in arable Non-Chernozem soils modeled values of carbon biogeochemical cycle components and carbon dioxide emission are no higher than real ones. For nitrogen uptake by crops and nitrogen, leaching under fertilizing conditions, there was not conformity between modeled results and field experiments data. The method of verification on the base of carbon content in crop biomass calculation was presented. DNDC is good for spring grain crops modeling, but often the values of plant biomass are decreased by model plant biomass.

About the Author

O. E. Sukhoveeva
Institute of Geography, Russian Academy of Sciences.
Russian Federation
Moscow.


References

1. Balashov E.V., Buchkina N.P., Rizhiya E.J., and Pavlik S.V. Direct measurements and forecast of nitrous oxide emissions from soils using the DNDC model. In Snizhenie otritsatel’nogo vozdeistviya na okruzhayushchuyu sredu khimicheski aktivnogo azota pri proizvodstve sel’skokhozyaistvennoi produktsii [Decreasing of Negative Influence of Chemically Reactive Nitrogen on Environment During Agricultural Production]. St.Petersburg: IAEPAP Publ., 2010, pp. 60–68. (In Russ.).

2. Vnesenie udobrenii pod urozhai 1990–2014 gg. i provedenie rabot po khimicheskoi melioratsii zemel’' [Fertilizers Input for Yields 1990–2014 and Implementation of Chemical Melioration]. Moscow: Rosstat Publ., 1991– 2015. 64 p.

3. Edinaya mezhvedomstvennaya informatsionno – statisticheskaya sistema [Federal State Statistics Service]. Availbale at: https://www.fedstat.ru/ (accessed 12.05.2018).

4. Ivanov Y.D. Dynamics of organic matter and nitrogen balance for by-farm crop rotation and permanent crops in sod-podzolic soil. Extended Abstract of Cand. Sci. (Agricult.) Dissertation. Moscow: MTAA Publ., 1969. 15 p.

5. Kidin V.V., Gustchina E.O., and Zenkina V.V. Ammonium and nitrate nitrogen used by fodder beet, nitrogen transformations in various horizons of sod-podzolic soil. Izv. of Timiryazev Agricultural Academy, 2009, no.1, pp. 5–12. (In Russ.).

6. Levin F.I. Amount of plant residues of field crops and its definition by yield of the main products. Agricultural Chemistry, 1977, no. 8, pp. 36–42. (In Russ.).

7. Lukin S.M. Carbon dioxide emission in potato agrocenoses on sod-podzolic sandy loam soil. Vladimirskii Zemledelets, 2015, no. 3–4 (74), pp. 22–23. (In Russ.).

8. Lukin S.M., and Marchuk E.V. Influence of biological preparations of associative nitrogen-fixing microorganisms on productivity of agricultural crops. Dostizheniya nauki i tekhniki APK, 2011, no. 8, pp. 18–21. (In Russ.).

9. The National Report of the Russian Federation on the Inventory of the Anthropogenic Emissions and Sinks of Greenhouse Gases Not Controlled by the Montreal Protocol for the years 1990–2013. Moscow: Roshydromet Publ., 2015. 476 p.

10. Sapronov D.V. Long-term dynamics of CO2 emission from grey forest and sod-podzol soils. Extended Abstract of Cand. Sci. (Biol.) Dissertation. Pushchino, IFCBPS RAS, 2008. 20 p.

11. Spetsializirovannye massivy dlya klimaticheskikh issledovanii: Informatsia VNIIGMI-MCD [Special Massifs for Climatic Research: Information of RIHMI-WDC]. Availbale at: http://aisori.meteo.ru/ClimateR (accessed 12.05.2018). (In Russ.).

12. Balashov E., Buchkina N., Rizhiya E., and Farkas C.S. Field validation of DNDC and SWAP models for temperature and water content of loamy and sandy loam spodosols. Int. Agrophys., 2014, vol. 28, no. 2, pp. 133– 142.

13. Balashov E., Horak J., Siska B., Buchkina N., Rizhiya E., and Pavlik S. N2O fluxes from agricultural soils in Slovakia and Russia – direct measurements and prediction using the DNDC model. Folia Oecologica, 2010, vol. 37, no. 1, pp. 8–15.

14. Beheydt D., Boeckx P., Li C., and van Cleemput O. Validation of DNDC for 22 long-term N2O field emission measurements. Atmos. Environ., 2007, vol. 41, no.29, pp. 6196–6211.

15. Elzen M.G.J., Beusen A.H.W., and Rotmans J. An integrated modeling approach to global carbon and nitrogen cycles: Balancing their budgets. Global Biogeochem. Cy., 1997, vol. 11, no. 2, pp. 191–215.

16. Gerber S., Hedin L.O., Oppenheimer M., Pacala S.W., Shevliakova E. Nitrogen cycling and feedbacks in a global dynamic land model. Global Biogeochem. Cy., 2010, no. 24, GB1001.

17. Hsieh C.-I., Leahy P., Kiely G., Li C. The effect of future climate perturbations on N2O emissions from a fertilized humid grassland. Nutr. Cycl. Agroecosys., 2005, vol. 73, no 1, pp. 15–23.

18. International Soil Modeling Consortium (ISMC). Available at: https://soil-modeling.org/copy_of_models (accessed 12.05.2018).

19. Jain A., Yang X., Kheshgi H., McGuire A.D., Post W., Kicklighter D. Nitrogen attenuation of terrestrial carbon cycle response to global environmental factors. Global Biogeochem. Cy., 2009, no. 23, pp. GB4028.

20. Kurbatova J., Tatarinov F., Varlagin A., Shalukhina N., Olchev A., Li C. Modeling of the carbon dioxide fluxes in European Russia peat bogs. Environ. Res. Lett., 2009, vol. 4, no. 4, pp. 045022.

21. Li C., Frolking S., Crocker G.J., Grace P.R., Klir J., Korchens M., and Poulton P.R. Simulating trends in soil organic carbon in long-term experiments using the DNDC model. Geoderma, 1997, no. 81, pp. 45–60.

22. Thornton P.E., Doney S.C., Lindsay K., Moore J.K., Mahowald N., Randerson J.T., Fung I., Lamarque J.-F., Feddema J.J., Lee Y.-H. Carbon-nitrogen interactions regulate climate–carbon cycle feedbacks: results from an atmosphere–ocean general circulation model. Biogeosciences, 2009, no. 6, pp. 2099–2120.

23. Wang M. and Wang Y. Using a modified DNDC model to estimate N2O fluxes from semi-arid grassland in China. Soil Biology and Biochemistry, 2003, vol. 35, no.4, pp. 615–620.


Graphical Abstract

1. Сопоставление данных моделирования с результатами полевых измерений (верификация модели DNDC по литературным источникам) и Верификация модели DNDC по содержанию углерода в биомассе сельскохозяйственных культур: озимой пшеницы, ячменя и картофеля
Subject
Type Исследовательские инструменты
View (462KB)    
Indexing metadata ▾
2. Comparison of modelled values and measured in field conditions ones (the model DNDC verification on the base of literature sources) and Verification of the model DNDC on the base of carbon content in crops biomass (for winter wheat, barley, and potato)
Subject
Type Исследовательские инструменты
View (417KB)    
Indexing metadata ▾
  • The DNDC (DeNitrification-DeComposition) model represents correctly values of CO2 emission and other components of carbon biogeochemical cycle.
  • The modeled values of nitrogen cycle components in the Non-Chernozem zone differ from the measured ones.
  • The DNDC model properly predicts patterns of crops biomass formation and its input into soil.
  • A method for the DNDC model verification on the base of carbon content in crop biomass is presented.
  • In Russia the best model’s results were obtained for the grain crops.

Review

For citations:


Sukhoveeva O.E. VERIFICATION OF THE DNDC MODEL FOR ESTIMATION OF CARBON AND NITROGEN EXCHANGE PARAMETERS IN ARABLE SOILS IN CENTRAL NON-CHERNOZEM ZONE. Izvestiya Rossiiskoi Akademii Nauk. Seriya Geograficheskaya. 2018;(4):88-95. (In Russ.) https://doi.org/10.1134/S2587556618040155

Views: 513


ISSN 2587-5566 (Print)
ISSN 2658-6975 (Online)