Contemporary Erosion and Suspended Sediment Yield Within River Basins in the Steppe of the Southeastern Part of the Russian Plain: A Case Study of the Samara River basin
https://doi.org/10.31857/S2587-55662019137-51
Abstract
The paper presents the results of contemporary trend assessment in general erosion intensity within the southeastern steppe sector of the Russian Plain, a case study of the Samara River (the upper reaches) basin (22,800 km2, Orenburg oblast, European part of Russia), based on the long-term studying of river suspended sediment yield dynamics. The assessment is supplemented by accumulation rates field study of the soil-rill-gully erosion products in a typical small catchment (the catchment area is 1.92 km2) of the river basin using environmental radioactive caesium-137 (incl. Chernobyl-derived 137Cs) as a chro-nomarker. The results obtained clearly show that the Samara River’s suspended sediment yield has been reduced at least twice over the last 30 years compared with 1940-1960s. The marked decreasing trend in the erosion intensity in the Samara River basin is confirmed by a decrease (by 3.0-3.6 times as a minimum) in accumulation rates of the erosion products over the past 60 years within the dry valley bottom of the studied small catchment. The main reason for such significant erosion rates reduction was a decrease in surface snowmelt runoff within the basin area since the early 1980s, associated with a reduction in a soil freezing depth and a general increase in air temperature during spring months.
Keywords
About the Authors
A. V. GusarovRussian Federation
A. G. Sharifullin
Russian Federation
References
1. Apukhtin A.V., Kumani M.V. Modern conditions of the surface runoff formation during the spring river floods in the Kursk region. Uchenye Zapiski: Elektronnyi Nauchn. Zhurnal Kursskogo Gos. Univ., 2012, no. 1, pp. 300-311. (In Russ.).
2. Atlas radioaktivnogo zagryazneniya Evropeiskoi chasti Rossii, Belorussii i Ukrainy [Atlas of Radioactive Pollution of European Russia, Belarus and Ukraine]. Izrael Yu.A., Ed. Moscow: Rosgidromet, Roskartografiya Publ., 1998. 144 p.
3. Barabanov A.T. Agrolesomelioratsiya v pochvo-zashchitnom zemledelii [Agromelioration in Soil-Protecting Agriculture]. Volgograd: VNIALMI Publ., 1993. 156 p.
4. Bulygina O.N., Korshunova N.N., Razuvaev V.N. Ekstremal’nost’ klimata na territorii Rossii [Climate Extremalities on the Territory of Russia]. Available at: http://meteo.ru/pogoda-i-klimat/196-extremclim (accessed 04.08.2017). (In Russ.).
5. Vert N. Istoriya sovetskogo gosudarstva, 1900—1991 gody [The Soviet Union History, 1900-1991]. Moscow: Progress-Akademiya Publ., 1992. 480 p.
6. Gabbasova I.M., Suleimanov R.R., Komissarov M.A., Garipov T.T., Sidorova L.V., Khaziev F.K., Khabirov I.K., Fruehauf M., Liebelt P. Temporal changes of eroded soils depending on their agricultural use in the southern Cis-Ural region. Eurasian Soil Sci., 2016, no. 10 (49), pp. 1277-1283.
7. Gareyev A.M., Zaytsev P.N. The main trends in the development of channel and erosion processes under the influence of natural and anthropogenic factors (a case study of the Bashkir Cis-Ural river basins). In Evolyutsiya erozionno-ruslovykh sistem, ee khozyaistvenno-ekonomicheskie i ekologicheskie posledstviya, prognoznye otsenki i uchet [The Evolution of Erosion-Channel Systems, Their Economic and Environmental consequences, Forecast Estimates and Record], Ufa: AETERNA Publ., 2017, pp. 107-110. (In Russ.).
8. Geograficheskii atlas Orenburgskoi oblasti [Geographical Atlas of the Orenburg Region]. Moscow: DIK Publ., 1999. 96 p.
9. Golosov V.N., Ostrova I.V., Silantyev A.N., Shkura-tova I.G. Radioisotope technique of assessment of the present-day deposition rate within drainage basins. Geomorfologiya, 1992, no. 1, pp. 30-36. (In Russ.).
10. Golosov V.N. Erozionno-akkumulyativnye protsessy v rechnykh basseinakh osvoennykh ravnin [Erosion and Deposition Processes in the River Basins of Cultivated Plains]. Moscow: GEOS Publ., 2006. 296 p.
11. Golosov V.N., Gennadiev A.N., Markelov M.V., Zhidkin A.P., Kovach R.G., Olson K.R., Chendev Y.G. Spatial and temporal features of soil erosion in the forest-steppe zone of the East-European Plain. Eurasian Soil Sci., 2011, no. 7(44), pp. 861-869.
12. Golosov V.N., Belyaev V.R., Markelov M.V., Shamshu-rina E.N. Specifics of sediment redistribution within a small arable catchment during different periods of its cultivation (Gracheva Loschina catchment, the Kursk region). Geomorfologiya, 2012, no. 1, pp. 25-35. (In Russ.).
13. Golosov V.N., Ivanova N.N, Gusarov A.V., Shari-fullin A.G. Assessment of the trend of degradation of arable soils on the basis of data on the rate of strato-zem development obtained with the use of 137Cs as a chronomarker. Eurasian Soil Sci., 2017, vol. 50, no. 10, pp. 1238-1252.
14. Gosudarstvennyi vodnyi kadastr SSSR. Osnovnye gidrologicheskie kharakteristiki (za 1971—1975 gg. i ves’ period nablyudenii) [The State Water Cadastre of the USSR. The Main Hydrological Characteristics (for 1971-1975 and the Whole Period of Observations], vol. 12(1): Nizhneye Povolzh’e [the Lower Volga Region]. Leningrad: Gidrometeoizdat Publ., 1980. 328 p.
15. Gusarov A.V. Riverbed and basin components of erosion and suspended sediments run off within river basins: a new method of assessment. Geomorfologiya, 2013, no. 2, pp. 23-39. (In Russ.).
16. Gusarov A.V. The main regularities of the ratio between river bed and basin components of erosion and suspended sediment flux in the Northern Eurasia’s river basins. Geomorfologiya, 2015, no. 4, pp. 3-20. (In Russ.).
17. Dedkov A.P., Mozzherin V.I. Erosiya i stok nanosov na Zemle [Erosion and Sediment Yield on the Earth]. Kazan: Kazanskii Univ., 1984. 264 p.
18. Ivanova N.N., Larionov G.A. Dynamics of small rivers extent: factors and quantitative estimates. In Prichiny i mekhanizm peresykhaniya malykh rek [Causes and Mechanism of Drying out of Small Rivers]. Kazan: Gran Dan Publ., 1996, pp. 37-42. (In Russ.).
19. Istoriya Orenburzh’ya [History of the Orenburg Region]. Futoryanskiy L.I., Ed. Orenburg: Orenburgskoe Knizhnoye Izdatel’stvo Publ., 1996. 351 p.
20. Klimat Rossii [Climate of Russia]. Kobysheva N.V., Ed. St. Petersburg: Gidrometeoizdat Publ., 2001. 655 p.
21. Komissarov M.A., Gabbasova I.M. Snowmelt-induced soil erosion on gentle slopes in the southern Cis-Ural region. Eurasian Soil Sci., 2014, no. 6 (47), pp. 734-743.
22. Markelov M.V., Golosov V.N., Belyaev V.R. Changes in the sedimentation rates on the floodplains of small rivers in the central Russian plain. Vestn. Mosk. Univ., Ser. 5: Geogr., 2012, no. 5, pp. 70-76. (In Russ.).
23. Panin G.N., Dzyuba A.V. Variations in wind direction and speed from Arctic to the Caspian Sea as a manifestation of modern climate changes. Water Resources, 2006, no. 6(33), pp. 737-753.
24. Resursy poverkhnostnykh vod SSSR. Osnovnye gidrologicheskie kharakteristiki (za ves’ period nablyudenii do 1963 g.) [Resources of Surface Waters of the USSR. The Main Hydrological Characteristics (for the Whole Period of Observations until 1963)], vol. 12(1): Nizhnee Povolzh’e [the Lower Volga Region]. Leningrad: Gidrometeoizdat Publ., 1966. 364 p.
25. Resursy poverkhnostnykh vod SSSR. Osnovnye gidrologicheskie kharakteristiki (za 1963—1970 gg. i ves’ period nablyudenii) [Resources of Surface Waters of the USSR. The Main Hydrological Characteristics (for 1963-1970 and the Whole Period of Observations)], vol. 12(1): Nizhnee Povolzh’e [the Lower Volga Region]. Leningrad: Gidrometeoizdat Publ., 1976. 332 p.
26. Ruslovoi rezhim rek Severnoi Evrazii (v predelakh byvshego SSSR) [Riverbed Regime of the North Eurasian Rivers (within the Former USSR)]. Chalov R.S., Ed. Moscow: Mosk. Gos. Univ., 1994. 336 p. (In Russ.).
27. Sobol N.V., Gabbasova I.M., Komissarov M.A. Impact of climate changes on erosion processes in Republic of Bashkortostan. Aridnye Ekosistemy, 2015, no. 5(4), pp. 22-28.
28. Topographical Map of scale 1:25000, sheet no. V-23-29-B. Central Administration of Geodesy and Cartography of the Cabinet of Ministers of the USSR, 1981. (In Russ.).
29. Frolova N.L., Kireeva M.B., Agafonova S.A., Evstigneev V.M., Efremova N.A., Povalishnikova Y.S. Intra-annual distribution of the plain rivers discharge within the European Russia and its change. Vodnoe Khozyaistvo Rossii: Problemy, Tekhnologii, Uprav-lenie, 2015, no. 4, pp. 4-20. (In Russ.).
30. Dore M.H.I. Climate change and changes in global precipitation patterns: what do we know? Environ. Int, 2005, vol. 31, no. 8, pp. 1167-1181.
31. Golosov V.N., Belyaev V.R., Markelov M.V. Application of Chernobyl-derived 137Cs fallout for sediment redistribution studies: lessons from European Russia. Hydrol. Process., 2013, vol. 27, no. 6, pp. 781-794.
32. Golosov V., Gusarov A., Litvin L., Yermolaev O., Chizhikova N., Safina G., Kiryukhina Z. Evaluation of soil erosion rates in the southern half of the Russian plain: methodology and initial results. Proc. IAHS, 2017, vol. 375, pp. 23-27.
33. Higgit D.I. The development and application of caesium-137 measurements in erosion investigation. In Sediment and Water Quality in River Catchments, Foster I.D.L., Gurnell A.M., Webb B.W., Eds. Chichester (UK): John Wiley & Sons Ltd, 1995, pp. 287-305.
34. Killick R., Fearnhead P., Eckley I.A. Optimal detection of change points with a linear computational cost. JASA, 2012, no. 107(500), pp. 1590-1598.
35. Killick R., Eckley I.A. Changepoint: An Rpackage for change point analysis. J. Stat. Softw., 2014, no. 58(3), pp.1-19.
36. Loughran R.J. The use of the environmental isotope caesium-137 for soil erosion and sedimentation studies. Trendin Hydrology, 1994, no. 1, pp. 149-167.
37. McNuttM. Climate change impacts. Science, 2013, vol. 341, no. 6145, 435 p.
38. Parfitt R.L., Baisden W.T., Ross C.W., Rosser B.J., Schipper L.A., Barry B. Influence of erosion and deposition on carbon and nitrogen accumulation in resampled steepland soils under pasture in New Zealand. Geoderma, 2013, vol. 192, no. 1, pp. 154-159.
39. Porto P., Walling D.E., Callegari G. Using 137Cs measurements to establish catchment sediment budgets and explore scale effects. Hydrol. Process., 2011, vol. 25, pp. 886-900.
40. R Core Team R: A language and environment for sta-tisticall computing. R Foundation for Statistical Computing, Vienna, Austria. 2017. Available at: https://www.R-project.org/
41. Walling D.E., Golosov V.N., Panin A.V., He Q. Use of radiocaesium to investigate erosion and sedimentation in a reas with highlevels of Chernobyl fallout. In Tracers in Geomorphology. Foter I.D.L., Ed. Chichester (UK): John Wiley&Sons Ltd, 2000, pp. 183-200.
Graphical Abstract
|
1. Межгодовые направленные изменения стока воды и взвешенных наносов р. Самара/Елшанка в 1940–2013 гг. | |
Subject | ||
Type | Исследовательские инструменты | |
View
(969KB)
|
Indexing metadata ▾ |
|
2. Year-to-year changes in water flow and suspended sediment yield of the Samara River at the village of Yelshanka during 1940–2013 | |
Subject | ||
Type | Исследовательские инструменты | |
View
(1MB)
|
Indexing metadata ▾ |
- The significant intra-annual changes in water flow have occurred in rivers of the Samara River basin, a left tributary of the Volga River, over the last decades: a decrease in the proportion of snowmelt flood flow and an increase in low-water flow.
- These changes were accompanied by at least a twofold decrease in suspended sediment yield of the rivers of the basin. That indicates a general weakening of the erosion intensity.
- The decreasing trend in the erosion intensity is confirmed by a reduction in accumulation rate of the erosion products in dry valley bottom of the studied small catchment of the Samara River basin since the 1990s.
- The main reasons for the general weakening of the erosion intensity on the interfluves of the Samara River basin were a decrease in snowmelt runoff on slopes and a reduction in area of cultivated lands in the region after the collapse of the USSR.
Review
For citations:
Gusarov A.V., Sharifullin A.G. Contemporary Erosion and Suspended Sediment Yield Within River Basins in the Steppe of the Southeastern Part of the Russian Plain: A Case Study of the Samara River basin. Izvestiya Rossiiskoi Akademii Nauk. Seriya Geograficheskaya. 2019;(1):37-51. (In Russ.) https://doi.org/10.31857/S2587-55662019137-51