Thermal Field of the Southern Taiga Landscape of the Russian Plain
https://doi.org/10.31857/S2587-55662019251-68
Abstract
The technology of allocation of order parameters (invariants) of the spatial structure of the thermal field of the southern taiga landscape (Central Forest Nature Reserve) obtained on the basis of the analysis of the time series of measurements in the long-wave channel of Landsat satellites from 1986 to 2017 and reflecting its stationary state is considered. It is shown that the heat flux is measured by the satellite not directly from the forest crowns, but from the ground layer of the atmosphere, the state of which is determined by the parameters of the landscape. It is found that the invariant component of the spatiotemporal variation of the thermal field is displayed by two order parameters: the first mainly reflects the temperature of winter months, the second — of summer. The contribution of relief and vegetation to the determination of invariants and the autochthonous components of the thermal field determined by the transition zones between the landscape elements contrasting in thermal radiation are revealed. It is shown that the thermal field measured by the satellite reflects the heat flux from the ground layer of the atmosphere, which is in direct interaction with the landscape cover.
About the Authors
Yu. G. PuzachenkoRussian Federation
Moscow
A. S. Baibar
Russian Federation
A. V. Varlagin
Russian Federation
Moscow
R. B. Sandlersky
Russian Federation
Moscow
A. N. Krenke
Russian Federation
Moscow
References
1. Bol'shayasovetskaya entsiklopediya [The Great Soviet Encyclopedia]. Moscow: Sovetskaya Entsiklopediya Publ., 1969-1978. 19774 p.
2. Kabanov M. V. Some regularities of climatic and ecosystem changes in Siberia. Zh. Sib. Fed. Univ., Biol. 2008, vol. 1, no. 4, pp. 312-322.
3. Kazakov A. A. Remote geothermal sensing of Western Siberia bogs (the case of Tarmany marsh massif). Tyumen St. Univ. Herald, 2013, no. 4, pp. 161-167.
4. Puzachenko Yu.G. Invariants of the dynamic geosystem. Izv. Akad. Nauk, Ser. Geogr., 2010, no. 5, pp. 6-16. (In Russ.).
5. Puzachenko Yu.G. Matematicheskie metody v ekologicheskikh igeograficheskikh issledovaniyakh [Mathematical Methods in Ecological and Geographical Research]. Moscow: ACADEMIA Publ., 2004. 416 p.
6. Puzachenko Yu.G. Organization of landscape. In Voprosy geografii. Sb. 138: Gorizonty lands-haftovedeniya [Problems of Geography. Vol. 137: Landscape Science Horizons]. Moscow: Kodeks Publ., 2014, pp. 35-65. (In Russ.).
7. Puzachenko Yu.G., Kozlov D.N. Geomorphological history of the region. Integrated research in the Central-Forest State Nature Biosphere Reserve: their past, present and future. In Tr. Tsentral'no-Lesnogo zapovednika [Proceedings of the Central Forest Reserve]. Tula, 2007, vol. 4, pp. 125-159. (In Russ.).
8. Sochava V.B. Uchenie o geosistemakh [The Doctrine of Geosystems]. Novosibirsk: Nauka Publ., 1975. 39 p. 9
9. Haken H. Principles of Brain Functioning: A Synergetic Approach to Brain Activity. Berlin, New York: Springer, 2001. 351 p.
10. . Haken H. Synergetics. An Introduction. Berlin: Springer, 1980. 450 p.
11. . Tsentral'no-Lesnoi gosudarstvennyi prirodnyi biosfernyi zapovednik. Populyarnyi ocherk [Central-Forest State Nature Biosphere Reserve. A Popular Essay]. Moscow: Delovoi Mir Publ., 2007. 80 p.
12. . Chen F., Yang S., Yin K., Chan P. Challenges to quantitative applications of Landsat observations for the urban thermal environment. J. Environ. Sci. — China, 2017, no. 59, pp. 80-88.
13. . Son N.T., Thanh B.X. Decadal assessment of urban sprawl and its effects on local temperature using Landsat data in Cantho city, Vietnam. Sustainable Cities and Society, 2018, no. 36, pp. 81-91.
14. . Fernandez-Manso A., Quintano C., Roberts D. Burn severity influence on post-fire vegetation cover resilience from Landsat MESMA fraction images time series in Mediterranean forest ecosystems. Remote Sens. Environ, 2016, no. 184, pp. 112-123.
15. . Hais M., Kuchera T. The influence of topography on the forest surface temperature retrieved from Landsat TM, ETM+ and ASTER thermal channels. ISPRS J.Photogramm., 2018, no. 64, pp. 585-591.
16. . Huang C.Y., Anderegg W.R.L. Vegetation, land surface brightness, and temperature dynamics after aspen forest die off. J. Geophys. Res. Biogeosci., 2014, vol. 119, no. 7, pp. 1297-1308.
17. . Jorgensen S.E., Svirezhev Y.M. Towards a Thermodynamic Theory for Ecological Systems. Elsevier, 2004. 380 p.
18. . Kang J.M., Yun H.C., Park J.K. Analysis of temperatures distribution of forest type class using Landsat imagery. ASPRS Annual Conference, Milwaukee, 2011, pp. 8-16.
19. . Puzachenko Y., Sandlersky R. , Sankovskii A. . Methods of Evaluating Thermodynamic Properties of Landscape Cover Using Multispectral Reflected Radiation Measurements by the Landsat Satellite. Entropy, 2013, no. 15(9), pp. 3970-3982.
20. . Puzachenko Y.G., Sandlersky R.B., Svirejeva-Hopkins A. Estimation of thermodynamic parameters of the biosphere, based on remote sensing. Ecol. Modell., 2011, no. 222, pp. 2913-2923.
21. . Ray T.W. A FAQ on Vegetation in Remote Sensing. California Institute of Technology, 1994. Available at: http://www.remote-sensing.info/wp-content/up-loads/2012/07/A_FAQ_on_Vegetation_in_Remote_Sensing.pdf (accessed 13.01.2019).
22. . Vlassova L., Perez-Cabello F., Nieto H., Martin P., Riano D. Assessment of Methods for Land Surface Temperature Retrieval from Landsat-5 TM Images Applicable to Multiscale Tree-Grass Ecosystem Modeling. Remote Sens., 2014, no. 6, pp. 4345-4368.
23. . Wood J. The Geomorphological Characterization of Digital Elevation Models. Leicester: University of Leicester, 1996. 466 p.
Graphical Abstract
|
1. Инварианты тепловых полей южно-таежного ландшафта по данным сцен Landsat | |
Subject | ||
Type | Исследовательские инструменты | |
View
(271KB)
|
Indexing metadata ▾ |
|
2. Thermal fields invariants in the southern taiga landscape using Landsat images | |
Subject | ||
Type | Исследовательские инструменты | |
View
(254KB)
|
Indexing metadata ▾ |
- There is a strong statistical relationship between the Landsat data on temperature and the data from weather station (R2 = 0.95) and weather tower (R2 = 0.97).
- 65% of the temperature variation is described by two invariants, which reflect winter and summer temperatures.
- The morphometric parameters of relief determine the temperature by 22% in wintertime and by 26% in summertime.
- Vegetation characteristics describe thermal fields by 54% in wintertime and by 68% in summertime.
Review
For citations:
Puzachenko Yu.G., Baibar A.S., Varlagin A.V., Sandlersky R.B., Krenke A.N. Thermal Field of the Southern Taiga Landscape of the Russian Plain. Izvestiya Rossiiskoi Akademii Nauk. Seriya Geograficheskaya. 2019;(2):51-68. (In Russ.) https://doi.org/10.31857/S2587-55662019251-68