Preview

Izvestiya Rossiiskoi Akademii Nauk. Seriya Geograficheskaya

Advanced search

Assessment of the Role of the Pacific Ocean in Present Climate Changes

https://doi.org/10.31857/S2587-5566201933-12

Abstract

Hydrothermodynamic processes in the atmosphere–ocean system played in favour of global warming slowdown in 1998–2014 were studied in this work. On the base of remote sensing and reanalysis data, close relationships between total global and regional column water vapour, terrestrial wind speed and temperature anomalies of upper layer water in tropical Pacific region were revealed. Increase of the wind speed in tropical Pacific has been observed since 1980 (linear trend ratio is –0.017 m · s–1/year). The most significant wind speed increase was in 1992–2013 (–0.025 m · s–1/year). During this period, the following phenomena were also observed: water temperature rise in upper layers of central and east equatorial Pacific regions by 0.024 K/year and accumulation of heat in the deeper layers of western Pacific north of the equator. These tendencies contributed to decrease in evaporation from the surface of the Pacific, which exerts considerable influence on the global mean water vapour content in the atmosphere with nearly 1-year lag (correlation coefficient is 0.88). Thus, average total column water vapour had been decreasing with average rate 0.12 mm/year until 2014. Atmospheric radiation transfer model calculations showed that decrease of water vapour content in atmospheric during 2001–2014 reduced the incoming part of Earth’s surface radiation balance by 0.93 W/m², which exceeds CO2-related increase in greenhouse warming by 11 times. Such behaviour of greenhouse gases concentrations could be the reason of decrease of winter temperature in Northern hemisphere. Summer temperatures continued to grow due to decrease in cloud optical depth in 35°N–70°N latitude zone and following radiation heating of the land surface.

About the Authors

V. F. Loginov
Institute for Nature Management, National Academy of Sciences of Belarus
Belarus


S. A. Lysenko
Institute for Nature Management, National Academy of Sciences of Belarus
Belarus


References

1. Byshev V.I., Neiman V.G., Romanov Yu.A., Serykh I.V. On the spatial heterogeneity of some parameters of the current climate global variability. Dokl. Akad. Nauk, 2009, vol. 426, no. 4, pp. 543–548. (In Russ.).

2. Byshev V.I., Neiman V.G., Romanov Yu.A., Serykh I.V. El Niño as a consequence of global atmospheric oscillation in the dynamics of the Earth’s climate system. Dokl. Akad. Nauk, 2012, vol. 446, no. 4, pp. 89–94. (In Russ.).

3. Fedorov V.M. Trends in the temperature of the surface of the oceans and their causes. Slozhnye Sistemy, 2015, vol. 2, no. 5, pp. 45–56. (In Russ.).

4. Fedorov V.M. Insolyatsiya Zemli i sovremennye izmeneniya klimata [Earth Insolation and Current Climate Change]. Moscow: Fizmatlit Publ., 2018. 232 p.

5. Baldridge A.M., Hook S.J., Grove C.I., Rivera G. The ASTER Spectral Library Version 2.0. Remote Sens. Environ., 2009, vol. 113, pp. 711–715.

6. Byshev V.I., Neiman V.G., Anisimov M.V., Gusev A.V., Serykh I.V., Sidorova A.N., Figurkin A.L., Anisimov I.M. Multi-decadal oscillations of the ocean active upper-layer heat content. Pure Appl. Geophys., 2017, vol. 174, no. 7, pp. 2863–2878.

7. Camp C.D., Tung K.-K. Surface warming by the solar cycle as revealed by the composite mean difference projection. Geophys. Res. Lett., 2007, vol. 34, no. L14703.

8. Chen X., Tung K.-K. Varying planetary heat sink led to global-warming slowdown and acceleration. Science, 2014, vol. 345, no. 6199, pp. 897–903.

9. Climatic Research Unit Data. Available at: http:// www.cru.uea.ac.uk/cru/data/temperature/ (accessed 12.03.2019).

10. Cronin T.W. On the choice of average solar zenith angle. J. Atmos. Sci., 2014, vol. 71, no. 8, pp. 2994–3003.

11. Dai A., Fyfe J.C., Xie S.-P., Dai X. Decadal modulation of global surface temperature by internal climate variability. Nat. Clim. Chang., 2015, vol. 5, no. 6, pp. 555–559.

12. Drijfhout S.S., Blaker A.T., Josey S.A., Nurser A.J.G., Sinha B., Balmaseda M. A. Surface warming hiatus caused by increased heat uptake across multiple ocean basins. Geophys. Res. Lett., 2014, vol. 41, no. 22, pp. 7868–7874.

13. England M.H., McGregor S., Spence P., Meehl G.A., Timmermann A., Cai W., Gupta A.S., McPhaden M.J., Purich A., Santoso A. Recent intensification of wind-driven circulation in the Pacific and the ongoing warming hiatus. Nat. Clim. Chang., 2014, vol. 4, pp. 222–227.

14. Hansen J., Sato M., Kharecha P., von Schuckmann K. Earth’s energy imbalance and implications. Atmos. Chem. Phys., 2011, vol. 11, no. 24, pp. 13421–13449.

15. Hu S., Fedorov A.V. The extreme El Niño of 2015–2016 and the end of global warming hiatus. Geophys. Res. Lett., 2017, vol. 44, no. 8, pp. 3816–3824.

16. Kebiao M., Jingming C., Zhaoliang L., Ying M., Yang S., Xuelan T., Kaixian Y. Global water vapor content decreases from 2003 to 2012: An analysis based on MODIS data. Chin. Geogr. Sci., 2017, vol. 27, no. 1, pp. 1–7.

17. Kosaka Y., Xie S.-P. Recent global-warming hiatus tied to equatorial Pacific surface cooling. Nature, 2013, vol. 501, no. 7467, pp. 403–407.

18. Ridley D.A., Solomon S., Barnes J.E., Burlakov V.D., Deshler T., Dolgii S.I., Herber A.B., Nagai T., Neely III R.R., Nevzorov A.V., Ritter C., Sakai T., Santer B.D., Sato M., Schmidt A., Uchino O., Vernier J.P. Total volcanic stratospheric aerosol optical depths and implications for global climate change. Geophys. Res. Lett., 2014, vol. 41, no. 22, pp. 7763–7769.

19. Risbey J.S., Lewandowsky S., Langlais C., Monselesan D.P., O’Kane T.J., Oreskes N. Well-estimated global surface warming in climate projections selected for ENSO. Nat. Clim. Chang., 2014, vol. 4, no. 9, pp. 835–840.

20. Santer B.D., Bonfils C., Painter J.F., Zelinka M.D., Mears C., Solomon S., Schmidt G.A., Fyfe J.C., Cole J.N.S., Nazarenko L., Taylor K.E., Wentz F.J. Volcanic contribution to decadal changes in tropospheric temperature. Nat. Geosci., 2014, vol. 7, pp. 185–189.

21. Scott C.E., Arnold S.R., Monks S.A., Asmi A., Paasonen P., Spracklen D.V. Substantial large-scale feedbacks between natural aerosols and climate. Nat. Geosci., 2018, vol. 11, pp. 44–48.

22. Steinman B.A., Mann M.E., Miller S.K. Atlantic and Pacific multidecadal oscillations and Northern Hemisphere temperatures. Science, 2015, vol. 347, no. 6225, pp. 988–991.

23. Tunved P., Stroöm J., Kulmala M., Kerminen V.-M., Dal Maso M., Svenningson B., Lunder C., Hansson H.-C. The natural aerosol over Northern Europe and its relation to anthropogenic emissions—implications of important climate feedbacks. Tellus B: Chem. Phys. Meteorol., 2008, vol. 60, no. 4, pp. 473–484.

24. VonderHaar T.H., Forsythe J.M., Luo J., Randel D.L., Woo S. Water vapor trends and variability from the global NVAP dataset, paper presented at 16th Symposium on Global Change and Climate Variations. New Orleans, 2008. Available at: https://ams.confex. com/ams/pdfpapers/84927.pdf (accessed 12.03.2019).

25. Yao S.-L., Huang G., Wu R.-G., Qu X. The global warming hiatus – a natural product of interactions of a secular warming trend and a multi-decadal oscillation. Theor. Appl. Climatol., 2016, vol. 123, no. 1–2, pp. 349–360.


Graphical Abstract

1. Средняя аномалия температуры земной поверхности в широтном поясе 30–75° с.ш. с мая по сентябрь
Subject
Type Исследовательские инструменты
View (642KB)    
Indexing metadata ▾
2. The mean anomaly of the Earth’s surface temperature at latitudes 30–75° N from May to September
Subject
Type Research Instrument
View (615KB)    
Indexing metadata ▾
  • A significant slowdown in global warming from 1998 to 2014 may be a consequence of the decrease of evaporation in the tropical Pacific.
  • The reduction of the total radiative forcing of greenhouse gases explains the winter air temperature decrease.
  • The decrease in summer air temperature was hampered by the additional heating of the underlying surface by solar radiation due to the reduction in the cloud optical thickness at latitudes 30–75° N.

Review

For citations:


Loginov V.F., Lysenko S.A. Assessment of the Role of the Pacific Ocean in Present Climate Changes. Izvestiya Rossiiskoi Akademii Nauk. Seriya Geograficheskaya. 2019;(3):3-12. (In Russ.) https://doi.org/10.31857/S2587-5566201933-12

Views: 672


ISSN 2587-5566 (Print)
ISSN 2658-6975 (Online)