Preview

Geotagged Photos on the Internet as a Data Source for Geographic Research

https://doi.org/10.31857/S2587556620030061

Abstract

The article presents an overview of geographical studies analyzing the spatial distribution of photographs points’ coordinates. These photos were uploaded by users on various open Internet resources: photo sharing, social networks, etc. Approaches to the classification of this kind of geographical research on the coverage of the territory, thematic focus, methodological principles are described. Naming of geotagged photos in the scientific literature are analyzed. Identified several thematic areas of research, where users’ geotagged photos are the study object. Their features are described. Examples of the researches conducted based on the photogeolocations’ analysis are given in different branches of geographical science: geography of tourism, behavioral geography, aesthetic geography, cultural geography, and others. The conclusions relate to the possibilities and features of the use of such data source as photographs’ geolocations in geographical research, as well as the prospects for such research for the Russian territories.

About the Author

M. V. Gribok
Lomonosov Moscow State University
Russian Federation
Moscow


References

1. Golubchikov Yu.N., Klimenko S.V., Kruzhalin V.I., Tikunov V.S. Tourism in individualization and geographical cognition. In Sbornik trudov Mezhd. konf. “Situatsionnye tsentry i informatsionno-analiticheskie sistemy klassa 4i dlya zadach monitoringa i bezopasnosti” (SCVRT2015-16) [Proc. Int. Conf. “Situational Centers and Class 4i Information-Analytical Systems for Monitoring and Security Tasks” (SCVRT2015-16)]. Pushchino, 2016, pp. 219-227. (In Russ.).

2. Golubchikov Yu.N., Klimenko S.V. Human geography in the Internet age. In Geokontekst: Nauchnyi mul’time-diinyi al’manakh [Geocontext: Scientific Multimedia Almanac]. Drezden, 2016, vol. 3, pp. 5-14. (In Russ.).

3. Sokolova A.A. Space to culture: the level of information development of geographical objects according to Google — Panoramio. Gumanitarnyi Vector, 2015, no. 2(42), pp. 89-94. (In Russ.).

4. Sokolova A.A. The Russian border in the traditional picture of the world and the Internet images (according to Google Earth, Panoramio). Vestn. Chit. Gos. Univ., 2011, no. 12(79), pp. 111-118. (In Russ.).

5. Sokolova A.A. The Volga-Baltic waterway on Google Earth virtual space and visualized reality. Izv. RGPUim. A.I. Gertsena, 2011, no. 141, pp. 148-160. (In Russ.).

6. Tikunov V.S., Belozerov V.S., Antipov S.O., Suprun-chuk I.P. Social media as a tool for the analysis of tourist objects (case study of the Stavropol krai). Vestn. Mosk. Univ., Ser. 5: Geogr., 2018, no. 3, pp. 89-95. (In Russ.).

7. Agarwal A., Chaudhuri U., Chaudhuri S., Seethara-man G. Detection of potential mosquito breeding sites based on community sourced geotagged images. In Geospatial InfoFusion and Video Analytics IV; and Motion Imagery for ISR and Situational Awareness II. Self D., Pel-lechia M.F.; Palaniappan K.; Dockstader S.L.; Deig-nan P.B.; Doucette P.J. International Society for Optics and Photonics, 2014, vol. 9089, p. 90890M.

8. Alivand M., Hochmair H. Extracting scenic routes from VGI data sources. In Proc. Second ACM SIGSPA-TIAL Int. Workshop on Crowdsourced and Volunteered Geographic Information. New-York, 2013, pp. 23-30.

9. Antoniou V., Morley J., Haklay M. Web 2.0 geotagged photos: Assessing the spatial dimension of the phenomenon. Geomatica, 2010, vol. 64, no. 1, pp. 99-110.

10. Bae S.H., Yun H.J. Spatiotemporal distribution of visitors’ geotagged landscape photos in rural areas. Tourism Planning & Development, 2017, vol. 14, no. 2, pp. 167-180.

11. Cooper C., Dickinson J., Phillips T., Bonney R. Citizen science as a tool for conservation in residential ecosystems. Ecology and Society, 2007, vol. 12, no. 2. Available at: http://www.ecologyandsociety.org/vol12/iss2/art11/ (accessed: 02.03.2020).

12. Crandall D.J., Backstrom L., Huttenlocher D., Kleinberg J. Mapping the world’s photos. In Proc. 18 Int. Confi on World Wide Web. ACM, 2009, pp. 761-770.

13. Da Rugna J., Chareyron G., Branchet B. Tourist behavior analysis through geotagged photographies: a method to identify the country of origin. In IEEE 13th Int. Symposium (CINTI). IEEE, 2012, pp. 347-351.

14. ElQadi M.M., Dorin A., Dyer A., Burd M., Bukovac Z., Shrestha M. Mapping species distributions with social media geo-tagged images: Case studies of bees and flowering plants in Australia. Ecol. Inform., 2017, vol. 39, pp. 23-31.

15. Figueroa Alfaro R.W. Evaluation of Cultural Ecosystem Aesthetic Value of the State of Nebraska by Mapping GeoTagged Photographs from Social Media Data of Panoramio and Flickr. Community and Regional Planning Program: Student Projects and Theses. Univ. of Nebraska, USA, 2015. 81 p.

16. Garcia-Palomares J. C., Gutićrre, J., Minguez C. Identification of tourist hot spots based on social networks: a comparative analysis of European metropolises using photosharing services and GIS. Appl. Geogr., 2015, vol. 63, pp. 408-417.

17. Gliozzo G., Pettorelli N., Haklay M. Using crowdsourced imagery to detect cultural ecosystem services: a case study in South Wales, UK. Ecol. Soc., 2016, vol. 21, no. 3. doi: 10.5751/ES-08436-210306

18. Goodchild M.F. Citizens as sensors: the world of volunteered geography. GeoJournal, 2007, vol. 69, no. 4, pp. 211-221. doi: 10.1007/s10708-007-9111-y

19. Goodchild M.F., Glennon J.A. Crowdsourcing geographic information for disaster response: a research frontier. Int. J. Digital Earth, 2010, vol. 3, no. 3, pp. 231-241.

20. Haider C.M.R., Ali M.E. Can we predict the scenic beauty of locations from geo-tagged Flickr images? In 23rd Int. Conf. on Intelligent User Interfaces. ACM, 2018, pp. 653-657.

21. Hauthal E., Burghardt D. Using VGI for analyzing activities and emotions of locals and tourists. In Proc. of AGILE2016:19th AGILE Conf. on Geographic Information Science, Helsinki, 14—17 June 2016. Available at: https://agile-online.org/conference_paper/cds/ag-ile_2016/shortpapers/149_Paper_in_PDF.pdf (accessed: 04.03.2020).

22. Hochmair H. Spatial association of geotagged photos with scenic locations. In GIFORUM, 2010, pp. 1-10. Available at: https://pdfs.semanticscholar.org/719d/2cf4cfdfb9f6c78c038ed812930714e4df48.pdf (accessed: 03.03.2020).

23. Hollenstein L., Purves R. Exploring place through user-generated content: Using Flickr to describe city cores. J. Spat. Inf. Sci., 2010, no. 1, pp. 21-48. doi: 10.5311/JOSIS.2010.1.3

24. Hovgesen H.H., Nielsen T.A.S, Lassen C., Godtved S. The potential for the exploration of activity patterns in the urban landscape with GPS-positioning and electronic activity diaries. In Int. Conf. for Integrating Urban Knowledge and Practice. Life in the Urban Landscape, Gothenburg, Sweden, May 30-June 4, 2005.

25. Hu Y., Gao S., Janowicz K., Yu B., Li W., Prasadd S. Extracting and understanding urban areas of interest using geotagged photos. Comput. Environ. Urban Syst., 2015, vol. 54, pp. 240-254.

26. Kaneko T., Yanai K. Visual event mining from geotweet photos. In IEEE Int. Conf. on Multimedia and Expo Workshops (ICMEW), 2013, pp. 1-6.

27. Kim Y., Kim C.K., Lee D.K., Lee H.W., Andrada R.I.T. Quantifying nature-based tourism in protected areas in developing countries by using social big data. Tour. Manag., 2019, vol. 72, pp. 249-256.

28. Kisilevich S., Mansmann F., Keim D. P-DBSCAN: a density based clustering algorithm for exploration and analysis of attractive areas using collections of geotagged photos. In Proc. 1st Int. Conf. on Computing for Geospatial Research & Application. 2010, 38 p.

29. Leung D., Newsam S. Exploring geotagged images for land-use classification. In Proc. of the ACM Multimedia Workshop on Geotagging and its Applications in Multimedia, ACM, 2012, pp. 3-8.

30. Levin N., Kark S., Crandall D. Where have all the people gone? Enhancing global conservation using night lights and social media. Ecol. Appl., 2015, no. 25, pp. 2153-2167.

31. Levin N., Lechner A.M., Brown G. An evaluation of crowdsourced information for assessing the visitation and perceived importance of protected areas. Appl. Geogr., 2017, no. 79, pp. 115-126.

32. Miah S.J., Vu H.Q., Gammack J., McGrath M. A big data analytics method for tourist behaviour analysis. Inf. Manag., 2016. doi: 10.1016/j.im.2016.11.011

33. Okuyama K., Yanai K. A travel planning system based on travel trajectories extracted from a large number of geotagged photos on the web. In The Era of Interactive Media. N.Y.: Springer, 2013, pp. 657-670. doi: 10.1007/978-1-4614-3501-3_54

34. Schlieder C., Matyas C. Photographing a city: An analysis of place concepts based on spatial choices. Spat. Cognit. Comput., 2009, vol. 9, no. 3, pp. 212-228.

35. Schonefelder S., Axhausen K., Antille N., Bierlaire M. Exploring the Potentials of Automatically Collected GPS Data for Travel Behaviour Analysis: A Swedish Data Source. Zurich: Arbeitsberichte Verkehrund Raumpla-nung, 2002. doi.org/10.3929/ethz-a-004403386

36. Su S., Wan C., Hu Y., Cai Z. Characterizing geographical preferences of international tourists and the local influential factors in China using geo-tagged photos on social media. Appl. Geogr., 2016, vol. 73, pp. 26-37.

37. Sreenivasamurthy S., Frank S. Efficacy of season prediction for geo-locations using geo-tagged images. In Proc. 2015 IEEE Int. Conf. on Information Reuse and Integration. IEEE, 2015, pp. 476-484.

38. Sun Y., Fan H., Bakillah M., ZipfA. Road-based travel recommendation using geo-tagged images. Comput. Environ. Urban Syst., 2015, no. 53, pp. 110-122.

39. Tenerelli P., Demsar U., Luque S. Crowdsourcing indicators for cultural ecosystem services: a geographically weighted approach for mountain landscapes. Ecol. In-dic., 2016, no. 64, pp. 237-248.

40. Walden-Schreiner C., Leung Yu.-F., Tateosian L. Digital footprints: Incorporating crowdsourced geographic information for protected area management. Appl. Geogr., 2018, vol. 90, pp. 44-54.

41. Willemen L., Cottam A. J., Drakou E.G., Burgess N.D. Using social media to measure the contribution of red list species to the nature-based tourism potential of African protected areas. PloS One, 2015, vol. 10, no. 6. doi: 10.1371/journal.pone.0129785

42. Xu G., Zhu X., Fu D., Dong J., Xiao X. Automatic land cover classification of geo-tagged field photos by deep learning. Environ. Modell. Softw., 2017, no. 91, pp. 127134.

43. Yanai K., Bingyu Q. Mining regional representative photos from consumer-generated geotagged photos. In Handbook of Social Network Technologies and Applications. Boston, MA: Springer, 2010, pp. 303-316.

44. Yanai K., Yaegashi K., Qiu B. Detecting cultural differences using consumer-generated geotagged photos. In Proc. of the 2nd Int. Workshop on Location and the Web. ACM, 2009, p. 1-4.

45. Zhang H., Korayem M., Crandall D.J., LeBuhn G. Mining photo-sharing websites to study ecological phenomena. In Proc. of the 21st Int. Conf. on World Wide Web, 2012, pp. 749-758.

46. Zou Z., He X., Xie X., Huang Q. Enhancing the Impression on Cities: Mining Relations of Attractions with Geo-Tagged Photos. In 2018 IEEE SmartWorld, Ubiquitous Intelligence & Computing, Advanced & Trusted Computing, Scalable Computing & Communications, Cloud & Big Data Computing, Internet of People and Smart City Innovation (SmartWorld/SCAL-COM/UIC/ATC/CBDCom/IOP/SCI). IEEE, 2018, pp. 1718-1724.


Graphical Abstract

1. PDF
Subject
Type Исследовательские инструменты
Download (3MB)    
Indexing metadata ▾
  • Geolocated photos are a new data source for research in behavioural, cultural, aesthetic, and other areas of geography.
  • The majority of the research with image geolocation analysis is presented in the geography of tourism.
  • For large-scale studies, not only geolocation data is analysed, but also the images, descriptions, and tags.

Review

For citations:


Gribok M.V. Geotagged Photos on the Internet as a Data Source for Geographic Research. Izvestiya Rossiiskoi Akademii Nauk. Seriya Geograficheskaya. 2020;84(3):461-469. (In Russ.) https://doi.org/10.31857/S2587556620030061

Views: 651


ISSN 2587-5566 (Print)
ISSN 2658-6975 (Online)