Modern Denudation in the Mountains and Its Contribution to the Global Land Denudation
https://doi.org/10.31857/S2587556621010052
Abstract
Increased attention to the quantitative assessment of the modern denudation of mountainous territories is due to the significance of the relief transformation within these territories and the key role of the material formed in the process of denudation of the mountains in the total volume of sediments transferred from land to the World Ocean. Significant progress in, first of all, remote sensing techniques for studying the rates of individual exogenous processes and denudation in general, which has occurred over the past decade, contributed to the significant quantitative data increase related to the dynamics of relief transformation. This was enabled by two factors: a significant increase in the accuracy of digital elevation models created using remote sensing methods and the simplification of the processing of the data obtained. The article summarizes the published results and systematizes the methods for studying modern land denudation. It is shown that the combined usage of a set of direct observation methods and remote sensing methods allows the most detailed characterization of space-time changes in the relief at various scales of the studies. About 52% of land denudation products are formed on slopes with inclinations >15%. For the remaining territories in the mountains, the rates of denudation are determined by a different combination of a set of factors: seismotectonic activity, meteorological characteristics, lithology, and anthropogenic load. The maximum cumulative effect of these factors is achieved in the basins of small rivers. It is due to the optimal combination of the above factors that slightly less than one third (6.8 billion tons) of the total volume of sediment supplied from land to the world ocean is formed due to the sediment yield of small and medium-sized rivers of the western sector of the Ring of Fire of the Pacific Ocean.
About the Authors
A. M. GrachevRussian Federation
Moscow
V. N. Golosov
Russian Federation
Faculty of Geography Lomonosov MSU
Moscow
References
1. Aibulatov D.N., Zotov L.V., Frolova N.L., Chalov S.R. Modern possibilities for the use of remote sensing methods to obtain information about water bodies. Zemlya iz Kosmosa: Naibolee Ejfektivnye Resheniya, 2015, no. 5, pp. 34-37. (In Russ.).
2. Alekseevskii N.I. Formirovanie i dvizhenie rechnykh nanosov [Formation and Movement of River Sediments]. Moscow: Mosk. Gos. Univ., 1998. 201 p.
3. Belozerova E.V., Chalov S.R. Determination of tur-bidty of river waters by optical methods. Vestn. Mosk. Univ., Ser. 5: Geogr., 2013, no. 6, pp. 39-45. (In Russ.).
4. Golosov V.N. Erozionno-akkumulyativnye protsessy v rechnykh basseinakh osvoennykh ravnin [Erosion-Accumulative Processes in River Basins of Developed Plains]. Moscow: GEOS Publ., 2006. 296 p.
5. Golosov V.N., Ermolaev O.P. Prostranstvenno-vremen-nye zakonomernosti razvitiya sovremennykh protsessov prirodno-antropogennoi erozii na Russkoi ravnine [Spatio-Temporal Patterns of Development of Modern Processes of Natural and Anthropogenic Erosion on the Russian Plain]. Kazan: Akad. Nauk Respubl. Tatarstan, 2019. 372 p.
6. Grachev A.M., Golosov V.N. Evaluation of the paleodenudation rates in the mountains: Main approaches and results. Izv. Akad. Nauk, Ser. Geogr., 2020, vol. 84, no. 5, pp. 704-714. (In Russ.).
7. Dedkov A.P., Mozzherin V.I. Eroziya i stok nanosov na Zemle [Erosion and Sediment Yield on Earth]. Kazan: Kazan. Gos. Univ., 1984. 264 p.
8. Makkaveev N.I. Ruslo reki i eroziya v ee basseine [River Channel and Erosion in Its Basin]. Moscow: Akad. Nauk SSSR, 1955. 346 p.
9. Makkaveev N.I. Some features of the erosion-accumulative process. Eroziya Pochv i Ruslovye Protsessy, 1981, no. 8, pp. 5-16. (In Russ.).
10. Mozzherin V.V. Dividing the runoff of suspended sediment from rivers of Northern Eurasia into channel and basin components and its geomorphological interpretation. In Regional’nye issledovaniya prirodno-territori-al’nykh kompleksov [Regional Studies of Natural and Territorial Complexes]. Sirotkin V.V, Denmukhametov R.R., Eds. Kazan: Meddok Publ., 2012, pp. 93-100. (In Russ.).
11. Sobolev S.S. Razvitie erozionnykh processov na territorii evropeiskoi chasti SSSR i bor’ba s nimi [Development of Erosion Processes in the European Part of the USSR and Counteracting Them]. Moscow: Akad. Nauk SSSR, 1948, vol. 1, 305 p.
12. Chalov R.S., Sidorchuk A.Yu., Golosov V.N. Erozion-no-ruslovye sistemy [Erosion-Channel Systems]. Moscow: INFRA-M Publ., 2017. 702 p.
13. Aalto R., Dunne T., Guyot J.L. Geomorphic controls on Andean denudation rates. J. Geol., 2006, vol. 114, no. 1, pp. 85-99.
14. Bagnold R.A. The Physics of Blown Sand and Desert Dunes. London: Methuen Publ., 1941. 265 p.
15. Basson G. Reservoir sedimentation - An overview of global sedimentation rates and predicted sediment deposition. In Abstracts of the Workshop on Erosion, Transport and Deposition of Sediment. Bern, Switzerland, 2008.
16. Carrivick J.L., Heckmann T., Turner A., Fischer M. An assessment of landform composition and functioning with the fist proglacial system dataset of the central European Alps. Geomorphology, 2018, vol. 321, pp. 117-128.
17. Dedkov A.P. Moszherin V.I. Erosion and sediment yield in mountain regions of the world. In Erosion, Debris Flows and Environment in Mountain Regions // Walling D.E., Davies T.R., Hasholt B., Eds. Wallingford, UK: IAHS Press, 1992, pp. 29-36.
18. Gilbert G.K. Hydraulic-Mining Debris in the Sierra Nevada. U.S. Geological Survey Professional Paper no. 105. Washington, DC: USGS, 1917. 154 p.
19. Golosov V., Zhang X.B., He X.B., Tang Q., Zhou P. Principal denudation processes and their contribution to fluvial suspended sediment yields in the Upper Yangtze River Basin and Volga River Basin. J. Mt. Sci., 2015, vol. 12, pp. 101-122.
20. Gusarov A.V., Golosov V.N., Ivanov M.M., Sharifullin A.G. Influence of relief characteristics and landscape connectivity on sediment redistribution in small agricultural catchments in the forest-steppe landscape zone of the Russian Plain within European Russia. Geomorphology, 2019, vol. 327, pp. 230-247.
21. Hewawasam T., von Blackenburg F., Schaller M., Ku-bik P. Increase of human over natural erosion rates in tropical highlands constrained by cosmogenic nuclides. Geology, 2003, vol. 31, pp. 597-600.
22. Hinderer M. From gullies to mountain belts: a review of sediment budgets at various scales. Sediment. Geol., 2012, vol. 280, pp. 21-59.
23. Hinderer M., Kastowski M., Kamelger A., Bartolini C., Schlunegger F. River loads and modern denudation of the Alps - A review. Earth-Sci. Rev., 2013, vol. 118, pp. 11-44.
24. Erosion and Sediment Yields in the Changing Environment. Collins A.L., Golosov V., Horowitz A.J., Lu X., Stone M., Walling D.E., Zhang X., Eds. Proc. IAHS Int. Commission on Continental Erosion Symp. Held at the Institute of Mountain Hazards and Environment. IAHS Press, 2012. 462 p.
25. Johnson J.P.L., Whipple K.X., Sklar L.S. Contrasting bedrock incision rates from snowmelt and flash floods in the Henry Mountains, Utah. Geol. Soc. Am. Bull., 2010, vol. 122, pp. 1600-1615.
26. Keller E., Adamaitis C., Alessio P., Anderson S., Goto E., Gray S., Gurrola L., Morell K. Applications in geomorphology. Geomorphology, 2019, vol. 366, 106729. doi 10.1016/j.geomorph.2019.04.001
27. Kober F., Zeilinger G., Hippe K., Marc O., Lendzioch T., Grischott R., Christl M., Kubik P.W., Zola R. Tectonic and lithological controls on denudation rates in the central Bolivian Andes. Tectonophysics, 2015, vol. 657, pp. 230-244.
28. Kolb A., Barth E., Koch R., Larsen R. Time-of-flight cameras in computer graphics. Comput. Graph. Forum, 2010, vol. 29, pp. 141-159.
29. Larsen I.J., Montgomery D.R., Greenberg H.M. The contribution of mountains to global denudation. Geology, 2014, vol. 42, pp. 527-530.
30. Lawler D.M. Advances in the continuous monitoring of erosion and deposition dynamics: Developments and applications of the new PEEP-3T system. Geomorphology, 2008, vol. 93, pp. 17-39.
31. Li G., West A.J., Densmore A.L., Jin Z., Zhang F., Wang J., Clark M., Hilton R.J. Earthquakes drive focused denudation along a tectonically active mountain front. Earth Planet. Sci. Lett., 2017, vol. 472, pp. 253-265.
32. McLennan S.M. Weathering and global denudation. J. Geol., 1993, vol. 101, pp. 295-303.
33. Milliman J.D., Meade R.H. World-wide delivery of river sediment to the oceans. J. Geol., 1983, vol. 91, no. 1, pp. 1-21.
34. Milliman J.D. Fluvial sediment in coastal seas: flux and fate. Nature and Resources, 1990, vol. 26, no. 4, pp. 12-22.
35. Milliman J.D, Syvitski J.P. Geomorphic/tectonic control of sediment discharge to the ocean: the importance of small mountainous rivers. J. Geol., 1992, vol. 100, pp. 525-544.
36. Milliman J.D., Farnsworth K.L. River Discharge to the Coastal Ocean: A Global Synthesis. Cambridge Univ. Press, 2013. 394 p.
37. Mishra A.K., Placzek C., Jones R. Coupled influence of precipitation and vegetation on millennial-scale erosion rates derived from 10Be. PLoS ONE, 2019, vol. 14, no. 1, e0211325. doi 10.1371/journal.pone.0211325
38. Morche D., Schmidt K.H., Sahling I., Herkommer M., Kutschera J. Volume changes of Alpine sediment stores in a state of post-event disequilibrium and the implications for downstream hydrology and bed load transport. Norw. J. Geogr., 2008, vol. 62, pp. 89-101.
39. Panin A. Land-ocean sediment transfer in palaeotimes, and implications for present-day natural fluvial fluxes. In Sediment Transfer Through the Fluvial System: Proceedings of the International Symposium Held at Moscow, Russia, from 2 to 6August, 2004. Golosov V., Belyaev V., Walling D.E., Eds. IAHS, 2004, pp. 115-124.
40. Schlunegger F., Norton K.P., Caduff R. Hillslope processes in temporate environments. In Treatise in Geomorphology. Mountain and Hillslope Geomorphology. Marston R., Stoffel M., Eds. San Diego: Academic Press, 2013, vol. 7, pp. 337-354.
41. Sidle R.C., Ochiai H. Landslides: Processes, Prediction, and land use. Washington, DC: Am. Geophys. Union, 2006. 312 p.
42. Strahler A.N. Dynamic basis of geomorphology. Geol. Soc. Am. Bull., 1952, vol. 63, pp. 923-938.
43. Strahler A.N. Hypsometric (area-altitude) analysis of erosional topography. Geol. Soc. Am. Bull., 1952, vol.63, pp. 1117-1142.
44. Turowski J.M., Cook K.L. Field techniques for measuring bedrock erosion and denudation. Earth Surf. Process. Landf., 2017, vol. 42, pp. 109-127.
45. Vanmaercke M., Poesen J., Broeckx J., Nyssen J. Sediment yield in Africa. Earth-Sci. Rev., 2014, vol. 136, pp. 350-368.
46. Walling D.E., Webb B.W. Patterns of sediment yield. In Background to Palaeohydrology. Gregory K.J., Ed. Chichester, UK: Wiley, 1983, pp. 69-100.
47. Walling D.E. Human impact on land-ocean sediment transfer by the world’s rivers. Geomorphology, 2006, vol. 79, pp. 192-216.
48. Walling D.E. The Impact of Global Change on Erosion and Sediment Transport by Rivers: Current Progress and Future Challenges. Paris: UNESCO, 2009. 26 p.
49. Willenbring J.K., Codilean A.T., McElroy B. Earth is (mostly) flat: Apportionment of the flux of continental sediment over millennial time scales. Geology, 2013, vol. 41, no. 3, pp. 343-346.
Review
For citations:
Grachev A.M., Golosov V.N. Modern Denudation in the Mountains and Its Contribution to the Global Land Denudation. Izvestiya Rossiiskoi Akademii Nauk. Seriya Geograficheskaya. 2021;85(1):49-58. (In Russ.) https://doi.org/10.31857/S2587556621010052