Quantitative Reconstruction of the Altai Region Annual Air Temperatures over the Past 1400 Years According to Analytical Microstratigraphy of Lake Kucherla Varved Clays
https://doi.org/10.31857/S2587556621010039
Abstract
The proglacial Lake Kucherla (Kucherlinskoe) in Altai contains annually laminated bottom sediments (glacial clay), which makes it possible to build accurate age models using layer counting (varve chronology). Age models (core dept-age of the sediment layer) were verified by isotopic data (Cs-137, Pb-210 and C-14) and analytical microstratigraphy techniques based on the use of scanning X-ray fluorescence analysis with synchrotron radiation beams (micro-XRF-SR). Time series of more than 20 rock-forming and trace elements were constructed over the entire core depth of Lake Kucherla bottom sediments. Comparison of geochemical data with regional instrumental meteorological observations in the interval 1940-2016 allowed us to identify climate indicators and build transfer functions-the annual air temperature as a function of the elemental composition of bottom sediments. The correlation coefficient for the average annual temperature is +0.59, which is a significant value (n = 76, p = 0.99), indicating the presence of a stable linear relationship between the variations of the meteorological parameter and the composition of bottom sediments formed under the influence of external weather and climate conditions. Using average 10-year values significantly increases the correlation coefficient (+0.84) and reduces the reconstruction error to ±0.52°C (for a 95% probability). By approximating the transfer function to the entire sampling depth, a reconstruction of the regional temperature change over the time interval of the last 1400 years was constructed with an estimated error of reconstructed parameter. A comparison of the reconstruction with the data of regional studies and global reconstructions for the Northern Hemisphere shows the presence of general trends and extremes and minimal discrepancies in time scales and reconstructed temperatures.
Keywords
About the Authors
A. V. DaryinRussian Federation
Novosibirsk
G. Chu
Russian Federation
Novosibirsk
C. San
China
Beijing
V. V. Babich
Russian Federation
Novosibirsk
I. A. Kalugin
Russian Federation
Novosibirsk
T. I. Markovich
Russian Federation
Novosibirsk
V. S. Novikov
Russian Federation
Novosibirsk
M. A. Maksimov
Russian Federation
Novosibirsk
F. A. Daryin
Russian Federation
Novosibirsk
D. S. Sorokoletov
Russian Federation
Novosibirsk
Ya. V. Rakshun
Russian Federation
Novosibirsk
A. A. Gogin
Russian Federation
National Research Center Kurchatov Institute
R. А. Senin
Russian Federation
Moscow
References
1. Babich V.V., Rudaya N.A., Kalugin I.A., Darin A.V. Complex use of the geochemical features of bottom deposits and pollen records for paleoclimate reconstructions (with lake Teletskoe, Altai Republic, as an example). Contemp. Probl. Ecol., 2015, vol. 8, no. 4, pp. 405— 413. doi 10.1134/S1995425515040022
2. Darin A.V., Alexandrin M.Yu., Kalugin I.A., Solomi-na O.N. Connection of meteorological data with geochemical characteristics of modern bottom sediments of Lake Donguz-Orun, Caucasus. Dokl. Akad. Nauk., 2015, vol. 463, no. 5. pp. 602-606. (In Russ.). doi 10.7868/S0869565215230176
3. Darin A.V., Babich V.V., Kalugin I.A., Markovich T.I., Rogozin D.Yu., Meidus A.V., Darin F.A., Rakshun Ya.V., Sorokoletov D.S. Geochemical features of annual layers of bottom sediments of freshwater lakes, studied via synchrotron radiation-induced XRF microanalysis. Bull. Russ. Acad. Sci. Phys., 2019, vol. 83, no. 11, pp. 1437-1440. doi 10.3103/S106287381911008X
4. Darin A.V., Kalugin I.A., Babich V.V., Markovich T.I., Grachev A.M., Darin F.A., Rakshun Y.V., Sorokoletov D.S. Searching for annually stratified bottom sediments in Altai Mountain lakes by means of XRF microanalysis using synchrotron radiation. Bull. Russ. Acad. Sci. Phys., 2019, vol. 83, no. 2, pp. 194-197. doi 10.3103/S1062873819020102
5. Darin A.V., Kalugin I.A., Rakshun Y.V. Scanning X-ray microanalysis of bottom sediments using synchrotron radiation from the BINP VEPP-3 storage ring. Bull. Russ. Acad. Sci. Phys., 2013, vol. 77, no. 2, pp. 182-184. doi 10.3103/S106287381302010X
6. Darin A.V., Rakshun Y.V., Sorokoletov D.S., Darin F.A., Kalugin I.A., Maksimova N.V., Markovich T.I. Seasonal geochemical signals in varves of the lake Donguz-Orun bottom sediments from scanning X-ray fluorescence with the use of microcapillary X-ray optics. Bull. Russ. Acad. Sci. Phys., 2015, vol. 79, no. 1, pp. 122-125. doi 10.3103/S1062873815010104
7. Darin F.A., Rakshun Y.V., Sorokoletov D.S., Darin A.V., Kalugin V.M. Development of micro-X-ray fluorescence methods with synchrotron beams from the VEPP-3 storage ring and their use to study the distribution of elements in natural samples. Yadernaya Fizika i Inzhiniring, 2017, vol. 8, no. 1, pp. 86-90. (In Russ.). doi 10.1134/S2079562917010067
8. Narozhnyi Yu.K., Osipov A.V. Oroclimatic conditions of glaciation in Central Altai. Izv. Russ. Geogr. O-va, 1999, vol. 131, no. 3, pp. 49-57. (In Russ.).
9. Nenasheva G.I. Rastitel’nost’ i klimat golotsena mezhgo-rnykh kotlovin Tsentral’nogo Altaya [Vegetation and Climate of the Holocene of Intermountain Basins of Central Altai]. Barnaul: Altai. Univ., 2013. 164 p.
10. Rikhvanov L.P., Okishev P.A., Soboleva N.P., Mataev E.I. Geochemical characteristics of varved clays of the Altai Mountains and the possibility of their use in glaciolo-gical studies. Izv. Tomsk. Politekh. Univ., Inzhiniring Georesur., 2015, vol. 326, no. 2, pp. 23-36. (In Russ.).
11. Syromyatina M.V., Moskalenko I.G., Chistyakov K.V. Tendencies of climate change in the Altai mountains against the background of global climate changes derived from instrumental and dendrochronological data. Vestn. S.-Peterb. Univ., Ser. 7: Geol. Geogr., 2010, no. 3, pp. 82-91. (In Russ.). doi 10.18551/rjoas.2015-07.01
12. Fedak S.I., Turkin Yu.A., Gusev A.I., Shokalsii S.P. et al. State Geological Map of the Russian Federation. Scale 1 : 1000000 (third generation). Ser. Altae-Sayanskaya [Series Altai-Sayan]. Sheet: M-45: Gorno-Altaysk. Ob’’yasnitel’naya zapiska [Gorno-Altaysk. Explanatory Letter]. St. Petersburg: VSEGEI, 2011. 576 p.
13. Alexandrin M.Y., Darin A.V, Kalugin I.A., Dolgova E.A., Grachev A.M, Solomina O.N. Annual sedimentary record from lake Donguzorun (central Caucasus) constrained by high resolution SR-XRF analysis and its potential for climate reconstructions. Front. Earth Sci., 2018, vol. 6, p. 158. doi 10.3389/feart.2018.00158
14. Appleby P. The use of 210Pb and 137Cs as tracers in modelling transport processes in lake catchment systems. Stud. Environ. Sci., 1997, vol. 68, pp. 441-448. doi 10.1016/S0166-1116(09)70124-4
15. Brauer A. Annually laminated lake sediments and their paleoclimatic relevance. In The Climate in Historical Times. Fischer H. et al., Eds. Berlin: Springer, 2004, pp. 109-127. doi 10.1007/978-3-662-10313-5_7
16. Butz C., Grosjean M., Fischer D., Wunderle S., Tylmann W., Rein B. Hyperspectral imaging spectroscopy: A promising method for the biogeochemical analysis of lake sediments. J. Appl. Remote Sens., 2015, vol. 9, no. 1, 096031. doi 10.1117/1.JRS.9.096031
17. Christiansen B., Charpentier Ljungqvist F. The extratropical Northern Hemisphere temperature in the last two millennia: Reconstructions of low-frequency variability. Climate of the Past, 2012, vol. 8, no. 2, pp. 765786. doi 10.5194/cp-8-765-2012
18. Croudace I., Lowemark L., Tjallingii R., Zolitschka B. Current perspectives on the capabilities of high resolution XRF core scanners. Quat. Int., 2019, vol. 514, pp. 5-15. doi 10.1016/j.quaint.2019.04.002
19. Darin A., Chu G., Maksimov M., Novikov V. Layer counting and isotopic analysis of the recent bottom sediments of the glacial lake Kucherla (Russia, Gorny Altai). In International Multidisciplinary Scientific GeoConference: SGEM. Sofia, 2019, pp. 257-264. doi 10.5593/sgem2019V/4.2/S06.035
20. Darin F., Kalugin I., Darin A., Rakshun Y. The study internal structure of the annual layers in lake sediments using synchrotron radiation with x-ray focusing optics. Acta Geol. Sin., 2014, vol. 88, no. 1, pp. 5-6. doi 10.1111/1755-6724.12265_1
21. Cook E.R., Krusic PJ., Anchukaitis K.J., Buckley B.M., Nakatsuka T., Sano M. Tree-ring reconstructed summer temperature anomalies for temperate East Asia since 800 C.E. Clim. Dyn., 2013, vol. 41, nos. 11-12, pp. 2957-2972. doi 10.1007/s00382-012-1611-x
22. Eichler A., Olivier S., Henderson K., Laube A., Beer J., Papina T., Heinz W., Schwikowski M. Temperature response in the Altai region lags solar forcing. Geophys. Res. Lett., 2009, vol. 36, L01808. Doi 10.1029/2008GL035930
23. Shi F., Yang B., Mairesse A., Gunten L., Li J., Brau-ning A., Yang F., Xiao X. Northern Hemisphere temperature reconstruction during the last millennium using multiple annual proxies. Clim. Res, 2013, vol. 56, pp. 231-244. doi 10.3354/cr01156
24. IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovern- mental Panel on Climate Change. Stocker T.F., Qin D., Plattner G.-K., Tignor M., Allen S.K., Boschung J., Nauels A., Xia Y., Bex V., Midgley P.M., Eds. Cambridge, UK; New York, NY, USA: Cambridge Univ. Press, 2013. 1535 p.
25. Klimenko V., Matskovsky V., Dahlmann D. Multiarchive temperature reconstruction of the Russian Arctic for the past two millennia. Geogr. Environ. Sustain., 2014, vol. 7, no. 1, pp. 16-29. doi 10.24057/2071-9388-2014-7-1-16-29
26. Mann M.E., Bradley R.S., Hughes M.K. Northern Hemisphere temperatures during the past millennium: Inferences, uncertainties, and limitations. Geophys. Res. Lett., 1999, vol. 26, pp. 759-762. Doi 10.1029/1999GL900070
27. Mann M., Zhang Z., Rutherford S., Bradley R., Hughes M., Shindell D., Ammann C., Faluvegi G., Ni F. Global signatures and dynamical origins of the Little Ice Age and Medieval Climate Anomaly. Science, 2009, vol. 326, no. 5957, pp. 1256-1260. doi 10.1126/sci-ence.1177303
28. Moberg A., Sonechkin D.M., Holmgren K., Datsen-ko N.M., Karldn W. Highly variable Northern Hemisphere temperatures reconstructed from low-and high-resolution proxy data. Nature, 2005, vol. 433, no. 7026, pp. 613-617. doi 10.1038/nature03265
29. Rothwell R., Croudace I. Micro-XRF studies of sediment cores: A perspective on capability and application in the environmental sciences. In Micro-XRF Studies of Sediment Cores. Developments in Paleoenvironmental Research. Croudace I., Rothwell R., Eds. Dordrecht: Springer, 2015, vol. 17, pp. 1-21. doi 10.1007/978-94-017-9849-5_1
30. Trachsel M., Kamenik C., Grosjean M., McCarroll D., Moberg A., Brdzdil R., Buntgen U., Dobrovolny P., Esper J., Frank D., Friedrich M., Glaser R., Larocque-Tobler I., Nicolussi K., Riemann D. Multi-archive summer temperature reconstruction for the European Alps, AD 1053-1996. Quat. Sci. Rev., 2012, vol. 46, pp. 66-79. doi 10.1016/j.quascirev.2012.04.021
31. Tylmann W., Zolitschka B. Annually laminated lake sedimentsrecent progress. Quaternary, 2020, vol. 3, no. 1, pp. 1-3. doi 10.3390/quat3010005
32. Yang B., Braeuning A., Johnson K.R., Yafeng S. General characteristics of temperature variation in China during the last two millennia. Geophys. Res. Lett, 2002, vol. 29, no. 9, pp. 1324-1328. doi 10.1029/2001gl014485
33. Zolitschka B., Francus P., Ojala A.E., Schimmelmann A. Varves in lake sediments - a review. Quat. Sci. Rev., 2015, vol. 117, pp. 1-41. doi 10.1016/j.quascirev.2015.03.019
Review
For citations:
Daryin A.V., Chu G., San C., Babich V.V., Kalugin I.A., Markovich T.I., Novikov V.S., Maksimov M.A., Daryin F.A., Sorokoletov D.S., Rakshun Ya.V., Gogin A.A., Senin R.А. Quantitative Reconstruction of the Altai Region Annual Air Temperatures over the Past 1400 Years According to Analytical Microstratigraphy of Lake Kucherla Varved Clays. Izvestiya Rossiiskoi Akademii Nauk. Seriya Geograficheskaya. 2021;85(1):97-108. (In Russ.) https://doi.org/10.31857/S2587556621010039