Spatiotemporal Analysis of the Formation of Narrow Tree-Rings of Pine Belt Forests in the Steppe Zone of Western Siberia
https://doi.org/10.31857/S2587556621010131
Abstract
This article presents the results of the study of narrow pine tree-rings (Pinus sylvestris L.) of the belt forests (south of Western Siberia) in the steppe zone for the period from 1661 to 2019. In the analysis 19 tree-ring chronologies obtained from living trees and historical wood of old rural houses have been used. Narrow tree-rings in 75% of all chronologies have been noted for 2012, 2003, 1996, 1991, 1980, 1974, 1963, 1910, 1896, 1888, 1812, 1795, 1786, 1752, 1748, 1695, 1690 and 1688, which can be defined as regional pointer years. The increase in the frequency of formation of minimum radial growth in the second half of the 20th century, as well as in the second half of the 18th-early 19th centuries has been distinguished. The minimum number of narrow rings falls on the end of the 17th century-the beginning of the 18th century. Drought in the spring and summer period (especially in May) has been observed in the years of narrow rings formation in almost 100% of cases. Also significant is the deficit of precipitation in the preceding autumn-winter season. It has been established that the maximum concentration of pine growth minima falls on the periods of dominance of southern meridional circulation epochs.
Keywords
About the Authors
N. V. RygalovaRussian Federation
Barnaul
N. F. Kharlamova
Russian Federation
Barnaul
References
1. Altaiskii krai. Atlas [Altai krai. Atlas]. Moscow, Barnaul: GUGK Publ., 1978, vol. 1. 222 p.
2. Barashkova N.K. State of global circulation and extreme weather conditions in the south of Western Siberia. Geogr. Prir. Resur, 2002, no. 3, pp. 64-68. (In Russ.).
3. Demidko D.A., Krivets SA., Bisirova E.M. Connection between radial increment and tree vitality of Siberian stone pine. Vestn. Tomsk. Gos. Univ., Ser. Biol., 2010, vol. 12, no. 4, pp. 68-80. (In Russ.).
4. Demina A.V., Belokopytova L.V., Andreev S.G., Kostyakova T.V., Babushkina E.A. Radial increment dynamics of scots pine (Pinus sylvestris L.) as an indicator of hydrothermal regime of the Western Transbaikalia forest steppe. Sib. Ekol. Zh., 2017, vol. 24, no. 5, pp. 553-566. (In Russ.).
5. Dzerdzeevskii B.L. Obshchaya tsirkulyatsiya atmosfery i klimat [General Atmospheric Circulation and Climate]. Moscow: Nauka Publ., 1975. 285 p.
6. Zvezdchatyi pilil’shchik-tkach: vredonosnost’, lesopato-logicheskie obsledovaniya v ochagakh i mery zashchity [Acantholyda posticalis: Harmfulness, Forest Pathology Examinations in Hearths and Protection Measures]. Gninenko Yu.I., Seryi G.A., Bondarenko E.Yu., Eds. Pushkino: VNIILM, 2015. 60 p.
7. Kozlova D.S., Kharlamova N.F Changes in the Altai krai’s climate extremes over the period 1960-2010. Izv. Altai. Otd. Russ. Geogr. O-va, 2013, vol. 34, no. 1, pp. 105-108. (In Russ.).
8. Kononova N.K. Types of global atmospheric circulation: results of monitoring and retrospective assessment for 1899-2017. Fundam. Prikl. Klimatol., 2018, no. 3, pp. 108-123. (In Russ.).
9. Kulundinskaya step’ i voprosy ee melioratsii [Kulunda Steppe and Land Reclamation Issues]. Polubarinova-Kochina P.Ya., Ed. Novosibirsk: Nauka Publ., 1972. 506 p.
10. Kucherov S.E., Muldashev A.A. Radial growth of ordinary pine in the area of Karabash copper smelting plant. Lesovedenie, 2003, no. 2, pp. 43-49. (In Russ.).
11. Magda V.N., Oidupaa O.Ch., Blok I. Study of geographical features of the climatic signal of tree-ring chronologies by methods of cluster analysis. Izv. Russ. Geogr. O-va, 2004, vol. 136, no. 6, pp. 46-53. (In Russ.).
12. Malysheva (Rygalova) N.V., Bykov N.I. Dendrokhrono-logicheskie issledovaniya lentochnykh borovyuga Zapad-noi Sibiri [Dendrochronological Studies of the Pine Belt Forests in the South of Western Siberia]. Barnaul: Azbuka Publ., 2011. 125 p.
13. Matveev S.M., Matveeva S.V., Shurygin Y.N. Repetitiveness of severe droughts and long-term dynamics of radial growth of ordinary pine in Usman and Khrenov pine forests of Voronezh oblast. Zh. Sib. Fed. Univ., Ser. Biol., 2012, no. 5, pp. 27-42. (In Russ.).
14. Myglan V.S. Klimat i sotsium Sibiri v malyi lednikovyi period [Siberia’s Climate and Society in the Little Ice Age]. Krasnoyarsk: Sib. Fed. Univ., 2010. 230 p.
15. Ogurtsov L.A., Cheredko N.N., Volkova M.A., Zhuravlev G.G. Dynamics of climate extremes in Western Siberia. Optika Atmosfery i Okeana, 2016, vol. 29, no. 8, pp. 633-639. (In Russ.).
16. Papina T.S., Malygina N.S., Mitrofanova E.Yu. Comparison of temperature change reconstructions in Altai over the last 750 years according to the data from the Belukha glacier and bottom sediments of the Teletskoye Lake. Led i Sneg, 2011, vol. 113, no. 1, pp. 114-118. (In Russ.).
17. Revyakin V.S., Kharlamova N.F. Features of arid climate in the Altai krai. In Kulundinskaya step’:proshloe, nastoyashchee, budushchee [Kulunda Steppe: Past, Present, Future]. Barnaul: Altai. Univ., 2003, pp. 305— 312. (In Russ.).
18. Rumyantsev D.E., Kukhta A.E., Puchinskaya D.V. Climatic signal of droughts at the Norway spruce chronology from oxalis acetosella site in Central forest reserve. Vestn. Mosk. Gos. Univ. Lesa — Lesnoi Vestn., 2016, vol. 20, no. 2, pp. 36-43. (In Russ.).
19. Rygalova N.V., Bykov N.I. Spatiotemporal variation of the climatic signal of tree-rings chronology of the pine belt and pine forests in the Ob region. Zh. Sib. Fed. Univ., Ser. Biol., 2015, vol. 8, no. 4, pp. 394-409. (In Russ.).
20. Solomina O. et al. Zasukhi Vostochno-Evropeiskoi ravniny po gidrometeorologicheskim i dendrokhronolog-icheskim dannym [Droughts of the East European Plain According to Hydrometeorological and Tree-Ring Data]. Moscow, St. Petersburg: Nestor-Istoriya Publ., 2017. 360 p.
21. Tainik A.V., Myglan V.S., Barinov V.V., Nazarov A.N., Agatova A.R., Nepop R.K. Tree-ring growth of Siberian larch at the upper treeline in the Altai Republic. Izv. Akad. Nauk, Ser. Geogr., 2015, no. 6, pp. 61-71. (In Russ.).
22. Khantemirov R.M., Gorlanova L.A., Surkov A.Yu., Shiyatov S.G. Extreme climate events on Yamal for the last 4100 years according to dendrochronological data. Izv. Akad. Nauk, Ser. Geogr., 2011, no. 2, pp. 89-102. (In Russ.).
23. Cherenkova E.A., Kononova N. K. Relationship between atmospheric droughts in European Russia in the 20th century and macrocirculation processes. Izv. Akad. Nauk, Ser. Geogr., 2009, no. 1, pp. 73-82. (In Russ.).
24. Shiyatov S.G. et al. Metody dendrokhronologii [Methods of Dendrochronology]. Krasnoyarsk: Krasnoyarsk Univ. Publ., 2000, vol. 1. 80 p.
25. Babushkina E.A., Zhirnova D.F., Belokopytova L.V., Tychkov I.I., Vaganov E.A., Krutovsky K.V. Response of four tree species to changing climate in a moisture-limited area of South Siberia. Forests, 2019, vol. 10, no. 11, 999. doi 10.3390/f10110999
26. Bloomfield P. Fourier Analysis of Time Series: An Introduction. John Wiley & Sons Publ., 2000. 275 p.
27. Cook E.R., Kairiukstis L. Methods of Dendrochronology: Applications in Environmental Sciences. Dordrecht, Boston, London: Kluwer Acad. Publ., 1990. 394 p.
28. Cropper J.P. Tree-ring skeleton plotting by computer. Tree-Ring Bull., 1979, vol. 39, pp. 47-60.
29. He M., Brauning A., GrieBinger J., HochreutherP., Wernicke J. May-June drought reconstruction over the past 821 years on the south-central Tibetan Plateau derived from tree-ring width series. Dendrochronologia, 2018, vol. 47, pp. 48-57.
30. Holmes R.L. Computer-assisted quality control in tree-ring data and measurement. Tree-Ring Bull., 1983, vol. 43, pp. 69-78.
31. Jetschke G., Maaten E., Maaten-Theunissen M. Towards the extremes: A critical analysis of pointer year detection methods. Dendrochronologia, 2019, vol. 53, pp. 55-62.
32. Kopabayeva A., Mazarzhanova K., Kose N., AkkemikU. Tree-ring chronologies of Pinus sylvestris from Burabai Region (Kazakhstan) and their response to climate change. Dendrobiol., 2017, vol. 78, pp. 96110.
33. Koprowski M., Przybylak R., Zielski A., Pospieszyriska A. Tree rings of Scots pine (Pinus sylvestris L.) as a source of information about past climate in northern Poland. Int. J. Biometeorol., 2012, vol. 56, no. 1, pp. 1-10.
34. Kostyakova T.V., Babushkina E.A., Belokopytova L.V., Touchan R. Precipitation reconstruction for the Khakassia region, Siberia, from tree rings. The Holocene, 2018, vol. 28, no. 3, pp. 377-385.
35. Peterson T.C., Folland C., Gruza G., Hogg W., Moks-sit A., Plummer N. Report on the Activities of the Working Group on Climate Change Detection and Related Rapporteurs 1998—2001. ICPO Publication Series, no. 48. Geneva: WMO, 2001. 143 p. Available at: http://etc-cdi.pacificclimate.org/docs/wgccd.2001.pdf (accessed: 08.11.2020).
36. Rinn F. TSAP V3.5. Computer Program For Tree-Ring Analysis and Presentation. Heidelberg: Frank Rinn Distribution, 1996. 264 p.
37. Allione L.R., Lara W.H., Bogino S., Bravo F. How aridity variations affect Prosopis caldenia growth in transitional forests in the semiarid Argentinean Pampas. Dendrochronologia, 2018, vol. 50, pp. 126-133.
38. St. George S., Meko D.M., Girardin M.P. et al. The tree-ring record of drought on the Canadian Prairies. J. Clim., 2009, vol. 22, no. 3, pp. 689-710.
39. Tabakova M.A., Arzac A., Martinez E., Kirdyanov A.V. Climatic factors controlling Pinus sylvestris radial growth along a transect of increasing continentality in southern Siberia. Dendrochronologia, 2020, vol. 62, 125709. doi 10.1016/j.dendro.2020.125709
40. Ward J.H. Hierarchical grouping to optimize an objective function. J. Am. Stat. Assoc., 1963, vol. 58, no. 301, pp. 236-244.
Review
For citations:
Rygalova N.V., Kharlamova N.F. Spatiotemporal Analysis of the Formation of Narrow Tree-Rings of Pine Belt Forests in the Steppe Zone of Western Siberia. Izvestiya Rossiiskoi Akademii Nauk. Seriya Geograficheskaya. 2021;85(1):109-119. (In Russ.) https://doi.org/10.31857/S2587556621010131