Preview

Izvestiya Rossiiskoi Akademii Nauk. Seriya Geograficheskaya

Advanced search

Sedimentation Rates Evaluation in Caucasus Mountain Lakes as Indicators of Their Catchments Denudation

https://doi.org/10.31857/S2587556623010107

Abstract

The sedimentation rates of five lakes in the Western and Central Caucasus in the late Holocene were studied on the basis of radioisotope dating (137Cs of global and Chernobyl origin, 210Pbex, 14C). The lakes are located in different landscape zones and has different origin. The selection of bottom sediment cores was carried out after a reservoir map of the depths моnitoring based in areas with average maximum depths. The studied lakes catchments are minimally affected by anthropogenic impact; therefore, the reservoir influx of sediments, the sedimentation rate and their changes over time are mainly controlled by natural factors. It has been established that for two lakes in the mid-mountains with tinned and forested catchments, the current sediment accumulation rate is 0.05–0.07 cm/year, and half of it consist organic matter. Sedimentation rates in the high mountain Donguz-Orun Lake increases and have been equal to 0.32 cm/year in the last 30 years without taking into account the significant amount of sediment that is redeposited in the front of the reservoir delta. The opposite trend of sedimentation rates was revealed for the high-mountain Garabashi Lake, the distinctive feature of which is the absence of glaciers at present and a rather high projective cover of vegetation catchment. Sedimentation rates in the coastal Sukhoi Liman Lake, located in the low-mountain zone, are 0.1 cm/year with a slight growth trend due to some increase in anthropogenic load associated with local clearcuts and an increase in recreational load.

About the Authors

N. V. Kuzmenkova
Institute of Geography, Russian Academy of Sciences; Moscow State University
Russian Federation

Faculty of Chemistry MSU.

Moscow



V. N. Golosov
Institute of Geography, Russian Academy of Sciences; Moscow State University
Russian Federation

Faculty of Geography MSU.

Moscow



E. A. Grabenko
Institute of Geography, Russian Academy of Sciences
Russian Federation

Moscow



M. Y. Alexandrin
Institute of Geography, Russian Academy of Sciences
Russian Federation

Moscow



V. A. Shishkov
Institute of Geography, Russian Academy of Sciences
Russian Federation

Moscow



O. N. Byhalova
FGBU “State Reserve Utrish”
Russian Federation

Anapa



References

1. Abril J.M. On the use of 210Pb-based records of sedimentation rates and activity concentrations for tracking past environmental changes. J. Environ. Radioact., 2022, vol. 244–245, p. 106823. https://doi.org/10.1016/j.jenvrad.2022.106823

2. Ahn Y.S. Recent changes in sedimentation rate in three lakes of Ishikari Wetland, Northern Japan determinedby 210Pb dating. Water Resour., 2018, vol. 45, pp.795–802. https://doi.org/10.1134/S009780781805024X

3. Ahn Y.S., Nakamura F., Kizuka T., Nakamura Y. Elevated sedimentation in lake records linked to agricultural activities in the Ishikari River floodplain, northern Japan. Earth Surf. Process. Landf., 2009, vol. 34, no. 12, pp.1650–1660. https://doi.org/10.1002/esp.1854

4. Aleksandrin M.Yu., Dar’in A.V., Grachev A.M., Solomina O.N. Dynamics of regional climatic conditions over the past 2000 years according to lithological and geochemical studies of bottom sediments of Lake Karakel (Western Caucasus). Izv. Akad. Nauk, Ser. Geogr., 2019, no. 1, pp. 73–85. (In Russ.). https://doi.org/10.31857/S2587-55662019173-85

5. Appleby P.G., Oldfield F. The calculation of lead-210 dates assuming a constant rate of supply of unsupported 210Pb to the sediment. Catena, 1978, vol. 5, no. 1, pp. 1–8. https://doi.org/10.1016/S0341-8162(78)80002-2

6. Carbon Isotope Techniques, 1991. Elsevier. Carrivick J.L., Tweed F.S. Proglacial lakes: character, behaviour and geological importance. Quat. Sci. Rev., 2013, vol. 78, no. 15, pp. 34–52. https://doi.org/10.1016/j.quascirev.2013.07.028

7. Corbett D.R., Vance D., Letrick E., Mallinson D., Culver S., Decadal-scale sediment dynamics and environmental change in the Albemarle Estuarine System, North Carolina. Estuar. Coast. Shelf Sci., 2007, vol. 71, nos. 3–4, pp.717–729. https://doi.org/10.1016/j.ecss.2006.09.024

8. Corbett D.R., Walsh J.P. 210Lead and 137Cesium: establishing a chronology for the last century, In Handbook of Sea-Level Research. Shennan I., Long A.J., HortonB.P., Eds. John Wiley & Sons, Ltd, Chichester, UK, 2015, pp. 361–372. https://doi.org/10.1002/9781118452547.ch24

9. Doering C., Akber R., Heijnis H. Vertical distributions of 210Pb excess, 7Be and 137Cs in selected grass covered soils in Southeast Queensland, Australia. J. Environ. Radioact., 2006, vol. 87, no. 2, pp. 135–147. https://doi.org/10.1016/j.jenvrad.2005.11.005

10. Gao J., Long Y., Zhang X., Collins A.L., He X., Zhang Y., Shi Z. Interpreting sedimentation dynamics at Longxi catchment in the Three Gorges Area, China, using Cs137 activity, particle size and rainfall erosivity. J. Mt. Sci., 2016, vol. 13, pp. 857–869. https://doi.org/10.1007/s11629-015-3637-0

11. García-Ruiz J.M., Nadal-Romero E., Lana-Renault N., Beguería S. Erosion in Mediterranean landscapes: Changes and future challenges. Geomorphology, 2013, vol. 198, pp. 20–36. https://doi.org/10.1016/j.geomorph.2013.05.023

12. Golosov V., Tsyplenkov A. Factors Controlling Contemporary Suspended Sediment Yield in the Caucasus Region.Water,2021,vol.13,3173. https://doi.org/10.3390/w13223173

13. Grachev A.M., Novenko E.Y., Grabenko E.A., Alexandrin M.Y., Zazovskaya E.P., Konstantinov E.A., Shishkov V.A., Lazukova L.I., Chepurnaya A.A., KuderinaT.M., Ivanov M.M., Kuzmenkova N.V., Darin A.V., Solomina O.N. The Holocene paleoenvironmental history of Western Caucasus (Russia) reconstructed by multi-proxy analysis of the continuous sediment sequence from Lake Khuko. Holocene, 2021, vol.31,pp.368–379. https://doi.org/10.1177/0959683620972782

14. Hasholt B., Walling D.E., Owens P.N. Sedimentation in arctic proglacial lakes: Mittivakkat Glacier, southeastGreenland. Hydrol. Process., 2000, vol. 14, pp.679–699. https://doi.org/10.1002/(SICI)1099-1085(200003)14:4<679:AID-HYP966>3.0.CO;2-E

15. Hinderer M., Kastowski M., Kamelger A., Bartolini C., Schlunegger F. River loads and modern denudation of the Alps – A review. Earth-Sci. Rev., 2013, vol. 118, pp.11–44. https://doi.org/10.1016/j.earscirev.2013.01.001

16. Hutchinson S.M., Akinyemi F.O., Mîndrescu M., Begy R., Feurdean A. Recent sediment accumulation rates in contrasting lakes in the Carpathians (Romania): impacts of shifts in socio-economic regime. Reg. Environ. Change, 2016, vol. 16, pp. 501–513. https://doi.org/10.1007/s10113-015-0764-7

17. Izrael Yu.A. Atlas sovremennykh i prognoznykh aspektov posledstvii avarii na Chernobyl’skoi AES na postradavshikh territoriyakh Rossii i Belarusi [Atlas of Modern and Forecast Aspects of the Consequences of the Chernobyl Accident in the Affected Territories of Russia and Belarus]. Izrael Yu.A., Bogdevich I.M., Eds. Minsk: Belkartografiya, 2009. 140 p.

18. Izrael Yu.A. The atlas of caesium-137 contamination of Europe after the Chernobyl accident. In The radiological consequences of the Chernobyl accident. Brussels: European Commission, EUR 16544 EN. 1996, pp. 1–10.

19. Klaar M.J., Kidd C., Malone E., Bartlett R., Pinay G., Chapin F.S., Milner A. Vegetation succession in deglaciated landscapes: implications for sediment and landscape stability. Earth Surf. Process. Landf., 2015, vol.40, pp. 1088–1100. https://doi.org/10.1002/esp.3691

20. Kotlyakov V.M., Khromova T.Y., Nosenko G.A., PopovaV.V., Chernova L.P., Muraviev A.Y., Rototaeva O.V., Nikitin S.A., Zverkova N.M. Recent Glacier Changes in Mountain Regions of Russia. Мoscow: KMK Scientific Press. 2015. 288 p.

21. Kuzmenkova N.V., Ivanov M.M., Alexandrin M.Yu., Grachev A.M., Rozhkova A.K., Zhizhin K.D., Grabenko E.A., Golosov V.N. Use of natural and artificial radionuclides to determine the sedimentation rates in two North Caucasus lakes. Environ. Pollut., 2020, vol.262, 114269. https://doi.org/10.1016/j.envpol.2020.114269

22. Luque J.A., Julià R. Lake sediment response to land-use and climate change during the last 1000 years in the oligotrophic Lake Sanabria (northwest of Iberian Peninsula). Sediment. Geol., 2002, vol. 148, pp. 343–355. https://doi.org/10.1016/S0037-0738(01)00225-1

23. Mikhalenko V.N., Kutuzov S.S., Lavrentiev I.I., Toropov P.A., Abramov A.A., Aleshina M.A., Gagarina L.V., Doroshina G.Ya., Zhino P. ., Kozachek A.V., Legrand M., Lim S., Nagornov O.V., Nosenko G.A., Polyukhov A.A., Potemkin A.D., Proinkert S., Rototaeva O.V., Smirnov A.M., Tarasov D.L., Tyuflin S.A., Khairedinova A.G., Chernyakov G.A., Shestakova A.A., Yarynich Yu.I. Ledniki i klimat Elbrusa [Glaciers and Climate of Elbrus]. Moscow–St. Petersburg: Nestor-Istoriya Publ., 2020. 372 p. ISBN: 978-5-4469-1671-9

24. Nesje A. A Piston corer for lacustrine and marine sediments. Arct. Alp. Res., 1992, vol. 24, pp. 257–259. https://doi.org/10.1080/00040851.1992.12002956

25. Otto J.-C., Schrott L., Jaboyedoff M., Dikau R. Quantifying sediment storage in a high alpine valley (Turtmanntal, Switzerland). Earth Surf. Process. Landf., 2009, vol.34, pp. 1726–1742. https://doi.org/10.1002/esp.1856

26. Owens P., and Slaymaker O. Late Holocene sediment yields in small alpine and subalpine drainage basins, British Columbia. In Erosion, Debris Flows and Environment in Mountain Regions, Walling D.E., Davies T.R., HasholtB., Eds. IAHS Publication 209. IAHS: Wallingford, 1992, pp. 147–154.

27. Putyrskaya V., Klemt E., Röllin S., Corcho–Alvarado J.A., Sahli H. Dating of recent sediments from Lago Maggiore and Lago di Lugano (Switzerland/Italy) using 137Cs and 210Pb. J. Environ. Radioact. 2020, vol. 212, 106135. https://doi.org/10.1016/j.jenvrad.2019.106135

28. Rose N.L., Morley D., Appleby P.G., Battarbee R.W., Alliksaar T., Guilizzoni P., Jeppesen E., Korhola A., Punning J.-M. Sediment accumulation rates in European lakes since AD 1850: trends, reference conditionsand exceedence. J. Paleolimnol. 2011, vol. 45, pp. 447–468. https://doi.org/10.1007/s10933-010-9424-6

29. Reimer P.J., Bard E., Bayliss A., Beck W.J., Blackwell P.G., Ramsey C.B., Buck C.E., Cheng H., Edwards R.L., Friedrich M., Grootes P.M., Guilderson T.P., Haflidason H., Hajdas I., Hatté C., Heaton T.J., HoffmannD.L., Hogg A.G., Hughen K.A., KaiserF.K., Kromer B., Manning S.W., Niu M., Reimer R.W., Richards D.A., Scott M.E., Southon J.R., Staff R.A., Turney C., van der Plicht J. IntCal13 and Marine13 Radiocarbon Age Calibration Curves 0– 50,000 Years cal BP. Radiocarbon, 2013, vol. 55, no. 4, pp. 1869–1887. https://doi.org/10.2458/azu_js_rc.55.16947

30. Schlunegger F., Hinderer M. Pleistocene/Holocene climate change, re-establishment of fluvial drainage network and increase in relief in the Swiss Alps. Terra Nova, 2003, vol. 15, pp. 88–95. https://doi.org/10.1046/j.1365-3121.2003.00469.x

31. Semertzidou P., Piliposian G.T., Chiverrell R.C., Appleby P.G. Long-term stability of records of fallout radionuclides in the sediments of Brotherswater, Cumbria (UK). J. Paleolimnol. 2019, vol. 61, pp. 231–249. https://doi.org/10.1007/s10933-018-0055-7

32. Su C.-C., Huh C.-A. 210Pb, 137Cs and 239,240Pu in East China Sea sediments: sources, pathways and budgets of sediments and radionuclides. Mar. Geol., 2002, vol.183, pp.163–178. https://doi.org/10.1016/S0025-3227(02)00165-2

33. Wang F., Wang H., Li J., Pei Y., Fan C., Tian L., Shang Z., Song M., Geng Y. 210Pb and 137Cs measurements in the Circum Bohai Sea coastal region: sedimentation rates and implications. Front. Earth Sci. China, 2008, vol. 2, pp. 276–282. https://doi.org/10.1007/s11707-008-0046-5

34. Xu M., Bogen J., Wang Z., Bønsnes, T.E., Gytri, S. Proglacial lake sedimentation from jökulhlaups (GLOF), Blåmannsisen, northern Norway. Earth Surf. Process. Landf., 2015, vol. 40, pp. 654–665. https://doi.org/10.1002/esp.3664

35. Yamada M., Aono T. 210Pb and 234Th in settling particles collected by time-series sediment traps in the Okinawa Trough. Deep Sea Research Part II: Topical Studies in Oceanogr., 2003, vol. 50, no. 2, pp. 487–501. https://doi.org/10.1016/S0967-0645(02)00466-6


Review

For citations:


Kuzmenkova N.V., Golosov V.N., Grabenko E.A., Alexandrin M.Y., Shishkov V.A., Byhalova O.N. Sedimentation Rates Evaluation in Caucasus Mountain Lakes as Indicators of Their Catchments Denudation. Izvestiya Rossiiskoi Akademii Nauk. Seriya Geograficheskaya. 2023;87(1):42-59. (In Russ.) https://doi.org/10.31857/S2587556623010107

Views: 347


ISSN 2587-5566 (Print)
ISSN 2658-6975 (Online)