Preview

The Current State of the Problem of Assessing the Characteristics of Water Bodies Diffuse Pollution in Lowland Watersheds

https://doi.org/10.31857/S258755662301017X

Abstract

A review of modern ideas about the nature and specifics of diffuse pollution of water bodies is made. The formation, movement, and transformation of water flows formed in watersheds during periods of snowmelt and rainfall saturated with dissolved and suspended substances is a complex multidimensional process distributed over the catchment area. The main factors in the formation of diffuse pollution of water bodies is the interaction of a complex of hydrological and geochemical processes, depending on the climatic features of the territory and the structure of land use in watersheds. The development of the chemical and biological industries has led to the entry into the natural environment of new pollutants alien to the biota, requiring new methods for monitoring and cleaning sources of diffuse and point pollution. In cities, the issue of entry and pollution of water bodies with a wide range of pollutants, including microplastics, is most acute. Suspension microparticles carry a significant proportion of priority pollutants for large cities (surfactants, oil products, heavy metals). It is noted that diffuse pollution of water bodies, which forms on various types of the underlying surface of watersheds, is not registered and is not regulated by any state water management or environmental department. The main reasons for this are the uncertainty of the consumer of diffuse runoff, the complexity of organizing its monitoring, and the incomplete understanding by state water authorities of its key role in pollution of water bodies due to insufficient scientific knowledge of the problem in Russia. The necessity of developing a modern scientifically substantiated network for monitoring diffuse runoff is noted. A review of modern models developed both in Russia and abroad, used to calculate the release of pollutants into water bodies using GIS technologies and advanced databases, is made. In a number of cases, an imbalance was noted in the degree of development of blocks describing the transfer of water, sediment and chemicals. Examples of the work of the Institute of Geography of the Russian Academy of Sciences in the modeling of diffuse pollution in the basin of the Cheboksary reservoir under the program “Improvement of the Volga” are given.

About the Authors

S. V. Yasinsky
Institute of Geography, Russian Academy of Sciences
Russian Federation

Moscow



E. A. Kashutina
Institute of Geography, Russian Academy of Sciences
Russian Federation

Moscow



M. V. Sidorova
Institute of Geography, Russian Academy of Sciences
Russian Federation

Moscow



References

1. American Public Works Association. Water Pollution Aspects of Urban Runoff. Washington D.C.: U.S. Department of Interior, FWPCA (present EPA), WP-20-15. 1969. 200 p.

2. Arheimer B., Olsson J. Integration and Coupling of Hydrological Models with Water Quality Models: Application in Europe. Swedish Meteorol. and Hydrol. Inst. (SMHI), 2003. 53 p.

3. Avellaneda P., Ballestero T.P., Roseen R.M., Houle J.J. On parameter estimation of urban storm-water runoff model. J. Environ. Eng., 2009, vol. 135, pp. 595–608.

4. Behrendt H., Opitz D. Retention of nutrients in river systems: dependence on specific runoff and hydraulic load. Hydrobiologia, 1999, pp. 111–122. https://doi.org/10.1007/978-94-017-2163-9_13

5. Bobrovitskaya N.N. Study and calculation of soil erosion from slopes. In Sbornik rabot po gidrologii [Сollection of Works on Hydrology]. Leningrad: Gidrometeoizdat Publ., 1977, vol. 12, pp. 93–99.

6. Bolgov M.V., Golubash T.Yu., Lazareva E.V., Rivar J. Modeling the surface water regime of the historical part of Rostov the Great. Geoekologiya, Inzhenernaya Geol., Gidrogeol., Geokriol., 2003, no. 6, pp. 508–518. (In Russ.).

7. Bolgov M.V., Zav’yalova E.V., Zaitseva A.V., Osipova N.V. Evaluating the diffuse runoff from urban territories in the Volga basin: case study of Rostov city. Water Resour., 2020, vol. 47, pp. 673–681. https://doi.org/10.1134/S0097807820050036

8. Borisov D.C. Bentley Systems – modeling and operation of external water supply and sewerage networks. Mech. Eng., 2009, no. 5, pp. 64–68. (In Russ.).

9. Chalov R.S. River sediments in erosion-channel systems. Extended Abstract of Doct. Sci. (Geogr.) Dissertation. Moscow: Moscow State Univ., 2021. 50 p.

10. Chen J., Adams B.J. Analytical urban storm water quality models based on pollutant buildup and washoff processes. J. Environ. Eng., 2006, vol. 132, pp. 1314–1330.

11. Chernogaeva G.M. Hydrological role of urbanization (the case of Moscow). In Vopr. Geogr. [Problems of Geography]. Moscow: Mysl’ Publ., 1976, vol. 102, pp.179– 184. (In Russ.).

12. Chuyan G.A., Boychenko Z.A., Tur O.P. Metodicheskie rekomendatsii po otsenke vynosa biogennykh veshchestv poverkhnostnym stokom [Guidelines for Assessing the Removal of Biogenic Substances by Surface Runoff]. Moscow: VASKHNIL, 1985. 32 p.

13. Dolgov S.V., Koronkevich N.I. Hydrological layering of the flat territory Izv. Akad. Nauk, Ser. Geogr., 2010, no. 1, pp. 7–25. (In Russ.).

14. Dolgov S.V., Shvydkii V.O., Stamm E.V. Patterns of the formation of nitrogen and phosphorus balance in river drainage areas in the central forest-steppe of the Russian Plain in 1990–2020. Izv. Akad. Nauk, Ser. Geogr., 2021, no. 3, pp. 355–367. (In Russ.).

15. Dryupina E.Yu., Eirikh A.N., Eirikh S.S., Papina T.S. Influence of large cities on the quality of river waters (the case of the Ob River near Barnaul). Voda: Khimiya i Ekologiya, 2014, no. 7, pp. 3–9. (In Russ.).

16. Dzhamalov R.G., Frolova N.L., Kireeva M.B., Rets E.P., Safronova T.I., Bugrov A.A., Telegina A.A., Telegina E.A. Sovremennye resursy podzemnykh i poverkhnostnykh vod evropeiskoi chasti Rossii: formirovanie, raspredelenie, ispol’zovanie [Modern Resources of Underground and Surface Waters of the European Part of Russia: Formation, Distribution, Use]. Moscow: Geos Publ., 2015. 320 p.

17. Fashchevskaya T.B., Motovilov Yu.G., Algushaeva A.V. Hydrological-hydrochemical models of the formation of diffuse pollution. In Diffuznoe zagryaznenie vodnykh ob’’ektov: Problemy i resheniya [Diffuse Pollution of Water Bodies: Problems and Solutions]. Danilov– Danil’yan V.I., Ed. Moscow: Inst. Vodn. Probl. Ros. Akad. Nauk, 2020a, pp. 102–125. (In Russ.).

18. Fashchevskaya T.B., Polyanin V.O., Kirpichnikova N.V. Diffuznoe zagryaznenie vodnykh ob"ektov: istochniki, monitoring, vodookhrannye meropriyatiya [Diffuse Pollution of Water Bodies: Sources, Monitoring, Water Protection Measures]. Moscow, 2020b. 171 p.

19. Frolov A.V., Georgievskii V.Y. Changes in water resources under conditions of climate warming and their impact on water inflow to Russian large reservoirs. Russ. Meteorol. Hydrol., 2018, vol. 43, pp. 390–396. https://doi.org/10.3103/S1068373918060067

20. Gander W. Buildup/Washoff Model for Dissolved Iron in Stormwater Runoff. Univ. of New Orleans, 2007. 73 р.

21. Gartsman B.I., Shamov V.V. Field studies of runoff formation in the far east region based on modern observational instruments. Water Resour., 2015, vol. 42, pp.766–775. https://doi.org/10.1134/S0097807815060044

22. Gironás J., Roesner L.F., Davis J. Storm Water Management Model. Applications Manual. Fort Collins: Dep. Civil and Environ. Eng. Colorado State Univ., 2009. 180 p.

23. Golosov V.N. Erosion-accumulative processes in the upper links of the fluvial network of the developed plains of the temperate zone. Extended Abstract of Doct. Sci. (Geogr.) Dissertation. Moscow: Moscow State Univ., 2003. 45 p.

24. Gordin I.V., Kirpichnikova N.V. Comparative assessment of the environmental hazard of surface runoff from industrial sites and urban areas. Prom. Energetika, 1993, no. 1, pp. 32–39. (In Russ.).

25. Gusev E.M., Nasonova O.N. Modelirovanie teplo-i vlagoobmena poverkhnosti sushi s atmosferoi [Modeling of Heat and Moisture Exchange of the Land Surface with the Atmosphere]. Moscow: Nauka Publ., 2010. 328 p.

26. Gusev Y.M. Dynamics-stochastic simulation of hydrological processes. Soviet Meteorol. Hydrol., 1982, no. 8, 58 p. Kalyuzhnyi I.L., Pavlova K.K. Formirovanie poter’ talogo stoka [Melt Runoff Losses Formation). Leningrad: Gidrometeoizdat Publ., 1981. 160 p.

27. Kasimov N.S., Lychagin M.Yu., Chalov S.R., ShinkarevaG.L., Pashkina M.P., Romanchenko A.O., Promakhova E.V. Catchment based analysis of matter flows in the Selenga-Baikal system. Vestn. Mosk. Univ., Ser. 5: Geogr., 2016, no. 3, pp. 67–81. (In Russ.).

28. Khrisanov N.I., Osipov G.K. Upravlenie evtrofirovaniem vodoemov [Management of Eutrophication of Water Bodies]. St. Petersburg: Gidrometeoizdat Publ., 1993. 279 p.

29. Kitaev L.M. Hydroecological assessment of urbanized territories. Izv. Akad. Nauk, Ser. Geogr., 1995, no. 3, pp.81–89. (In Russ.).

30. Kitaev L.M. Movement of chemical compounds in the “atmosphere-surface runoff” system in urban conditions. Izv. Akad. Nauk, Ser. Geogr., 1993, no. 6, pp. 111–114. (In Russ.).

31. Kondrat’ev S.A. Formirovanie vneshnei nagruzki na vodoemy: problemy modelirovaniya [Formation of External Load on Water Bodies: Modeling Problems]. St. Petersburg, 2007. 255 p.

32. Kondrat’ev S.A., Shmakova M.V. Matematicheskoe modelirovanie massoperenosa v sisteme vodosbor–vodotok– vodoem [Mathematical Modeling of Mass Transfer in the System Catchment Area–Watercourse–Reservoir]. St. Petersburg: Nestor–Istoriya Publ., 2019. 248 p.

33. Koronkevich N.I., Mel’nik K.S. Runoff transformation under the effect of landscape changes in the Moskva R. basin and in the territory of Moscow city. Water Resour., 2015, vol. 42, pp. 159–169. https://doi.org/10.1134/S0097807815020062

34. Kupriyanov V.V. Gidrologicheskie aspekty urbanizatsii [Hydrological Aspects of Urbanization]. Leningrad: Gidrometeoizdat Publ., 1977. 184 p.

35. L’vovich M.I., Chernyshev E.P. Patterns of water balance and material exchange in urban conditions. Izv. Akad. Nauk., Ser. Geogr., 1983, no. 3, pp. 23–29. (In Russ.).

36. Li R.M. Water and Sediment Routing from Watersheds. In Modeling of Rivers. Willey Int. Publ, 1979, ch. 9.1–9.88.

37. Litvin L.F., Golosov V.N., Dobrovol’skaya N.G., Ivanova N.N., Kiryukhina Z.P., Krasnov S.F. Stationary studies of soil erosion during snowmelt in the Central Non-Chernozem region. In Eroziya pochv i ruslovye protsessy [Soil Erosion and Channel Processes]. Chalova R.S., Ed. Moscow: Mosk. Gos. Univ., 1998, vol. 11, pp. 57–76.

38. Mikhailov S.A. Diffuznoe zagryaznenie vodnykh ekosistem. Metody otsenki i matematicheskie modeli [Diffuse Pollution of Aquatic Ecosystems. Estimation Methods and Mathematical Models]. Barnaul: Dei Publ., 2000. 131 p.

39. Motovilov Yu.G., Gelfan A.N. Modeli formirovaniya stoka v zadachakh gidrologii rechnykh basseinov [Models of Runoff Formation in the Problems of Hydrology of River Basins]. Moscow: Ros. Akad. Nauk, 2018. 300 p.

40. Nazarov N.A. Assessments of erosion loss of soils and removal of biogenic substances with surface runoff of melt and rain water in a river basin. Water Resour., 1996, vol. 23, pp. 597–604. (In Russ.).

41. Nazarov N.A., Leonov A.V. Modeling of annual water and biogeochemical cycles in a forest basin. Modeling of water and biogeochemical cycles of the forest basin during the year. Water Resour., 1999, vol. 26, pp. 29–40. (In Russ.).

42. Prostranstvenno-vremennye zakonomernosti razvitiya sovremennykh protsessov prirodno-antropogennoi erozii na Russkoi ravnine [Spatial and Temporal Patterns of Development of Modern Processes of Natural and Anthropogenic Erosion on the Russian Plain]. Golosov V.N., Ermolaev O.P., Eds. Kazan–Moscow, 2019. 371 p.

43. Rekomendatsii po raschetu sistem sbora, otvedeniya i ochistki poverkhnostnogo stoka s selitebnykh territorii, ploshchadok predpriyatii i opredeleniyu uslovii vypuska ego v vodnye ob’’ekty [Recommendations for the Calculation of Systems for Collecting, Diverting and Treating Surface Runoff from Residential Areas, Enterprise Sites and Determining the Conditions for Its Release into Water Bodies]. Moscow: NII VODGEO Publ., 2014. 88 p.

44. Shaw S.B., Stedinger J.R., Walter M.T. Evaluating urban pollutant buildup/wash-off models using a Madison, Wisconsin catchment. J. Environ. Eng., 2010, vol. 136, pp. 194–203.

45. Shmakova M.V. Model’ pochvennoi erozii [Soil Erosion Model]. Certificate of registration of the computer program 2021662286, 07/26/2021. Application No.2021661585 dated 07/26/2021. (In Russ.).

46. Sukhanovskii Yu.P. Prushchik A.V. Modeling of water erosion of soil. In Eroziya Pochv [Erosion of Soils]. LexonPrim, 2019. 200 p.

47. Sukhanovskii Yu.P., Piskunov A.N., Sanzharova S.I. Komp’yuternaya model' dlya raschyota srednemnogoletnikh poter' pochvy, obuslovlennykh dozhdevoi eroziei i eroziei pochv pri vesennem snegotayanii [A Computer Model for Calculating Average Annual Soil Losses Due to Rain and Soil Erosion During Spring Snowmelt]. Kursk: VNIIZiZPE RAAS Publ., 2009. 50 p.

48. Sutherland R.C., McCuen R.J. Simulation of Urban and Nonpoint Source Pollution. Water Resour. Bull., 1978, vol. 14, no. 2, pp. 409–428.

49. Terstriep M.L., Ming T. Lee, Evan P. Mills, Amelia V. Greene, M. Razeur Rahman Simulation of Urban Runoff and Pollutant Loading from the Greater Lake Calumet Area. Illinois State Water Survey Champaign, Illinois, October 1990. 99 р.

50. Upravlenie evtrofirovaniem vodoemov [Diffuse Pollution of Water Bodies: Problems and Solutions]. DanilovDanil’yan V.I., Ed. Moscow: Inst. Vodn. Probl. Ros. Akad. Nauk, 2020. 512 p.

51. Wang L., Wei J., Huang Y., Wang G., Maqsood I. Urban nonpoint source pollution buildup and washoff models for simulating storm runoff quality in the Los Angeles County. Environ. Pollut., 2011, vol. 159, pp. 1932–1940.

52. Yasinsky S.V. Spatial Heterogeneity and Water Loss of Snow Cover on the Slopes of Watersheds of Small Rivers in the Central Forest−Steppe. In Malye reki Rossii [Small Rivers of Russia]. Moscow: MTs GO RF Publ., 1994, pp. 207–229. (In Russ.).

53. Yasinskii S.V., Gusev E.M. Dynamic-stochastic modeling of spring slope runoff in small drainage areas. Eurasian Soil Sci., 2003, no. 7, pp. 761–774.

54. Yasinskii S.V., Kashutina E.A., Sidorova M.V., Narykov A.N. Anthropogenic load and the effect of drainage area on the diffuse runoff of nutrients into a large water body: case study of the Cheboksary reservoir. Water Resour., 2020, vol. 47, pp. 810–827.

55. Yasinsky S.V., Koronkevich N.I., Kashutina E.A., Sidorova M.V., Narykov A.N. Diffuse biogenic pollution of water bodies in the Volga river basin-example of Cheboksary reservoir basin. In Water Resources Management: Methods, Applications and Challenges, 2020, pp.123–152. (In Russ.).

56. Yasinsky S.V., Venitsianov E.V., Kashutina E.A., Sidorova M.V., Ershova A.A., Makeeva I.N. The contribution of microparticles to the transport of pollution by rivers and groundwater in a large city. In Sovremennye problemy vodokhranilishch i ikh vodosborov [Modern Problems of Reservoirs and Their Watersheds]. Perm, 2021, pp. 407–411. (In Russ.).

57. Yasinsky S.V., Vishnevskaya I.A., Venitsianov E.V. Diffuse pollution of water bodies and estimation of export of biogenic elements under different scenarios of water use in the watershed. Water Resour., 2019, vol. 46, pp. 266–277.

58. Yasinsky S.V., Gurov F.N., Shilkrot G.S. Method of driffed-over evaluation of biogenic elements to ravinebalka and river system by small river. Izv. Akad. Nauk, Ser. Geogr., 2007, no. 4, pp. 44–53. (In Russ.).

59. Yasinsky S.V., Kashutina E.A., Sidorova M.V. Results and Prospects of Hydrological Research at the Kursk Biosphere Station of the Institute of Geography of the Russian Academy of Sciences. Izv. Akad. Nauk, Ser. Geogr, 2021, vol. 85, no. 4, pp. 629–640. (In Russ.).

60. Zhidkin A.P., Golosov V.N., Dobryansky A.S. Assessment of the accuracy of digital elevation models for modeling soil erosion (by the example of a small catchment area in the kursk region). Sovr. Probl. Distantsionnogo Zondirovaniya Zemli iz Kosmosa, 2021, vol. 18, no. 5, pp.133–144. (In Russ.).

61. Zinov’ev A.T., Papina T.S., Kudishin A.V., Lovtskaya O.V., Dyachenko A.V., Marusin K.V., Noskova T.V. Experimental research and modeling of water quality to assess the impact of diffuse runoff from urban areas. In Nauchnye problemy ozdorovleniya rossiiskikh rek i puti ikh resheniya [Scientific Problems of Improving Russian Rivers and Ways to Solve Them]. Moscow: Studio F1 Publ., 2019, pp. 359–365.


Review

For citations:


Yasinsky S.V., Kashutina E.A., Sidorova M.V. The Current State of the Problem of Assessing the Characteristics of Water Bodies Diffuse Pollution in Lowland Watersheds. Izvestiya Rossiiskoi Akademii Nauk. Seriya Geograficheskaya. 2023;87(1):115-130. (In Russ.) https://doi.org/10.31857/S258755662301017X

Views: 813


ISSN 2587-5566 (Print)
ISSN 2658-6975 (Online)