Preview

Известия Российской академии наук. Серия географическая

Расширенный поиск

Диффузное загрязнение водных объектов равнинных территорий: проблемы оценки

https://doi.org/10.31857/S258755662301017X

Аннотация

Представлен обзор современных представлений о сущности и специфике диффузного (рассеянного) загрязнения водных объектов. Формирование, перемещение и трансформация водных потоков, образующихся на водосборах в периоды снеготаяния и выпадения интенсивных дождевых осадков, насыщенных растворенными и взвешенными веществами, – сложный многомерный процесс, распределенный по территории водосбора. Основными факторами формирования диффузного загрязнения водных объектов является взаимодействие комплекса гидрологических и геохимических процессов, зависящих от климатических особенностей территории и структуры использования земель на водосборах. Развитие химической промышленности и биотехнологий привело к поступлению в природную среду новых, чужеродных для биоты загрязнителей, требующих новых способов контроля и очистки источников диффузного и точечного загрязнения. В городах проблема диффузного загрязнения водных объектов широким спектром загрязняющих веществ стоит наиболее остро. Отмечено, что диффузное загрязнение водных объектов не регистрируется и не регулируется государственными водохозяйственными или природоохранными ведомствами. Это связано с неопределенностью “потребителя” диффузного стока, сложностью его мониторинга, непониманием его ключевой роли в загрязнении водных объектов из-за недостаточной изученности проблемы. Необходима современная научно обоснованная сеть мониторинга диффузного стока. Выполнен обзор моделей, разработанных как в России, так и за рубежом, используемых для расчета выноса загрязняющих веществ в водные объекты с использованием ГИС-технологий и развитых баз данных. Отмечена несбалансированность степени разработки блоков, описывающих перенос воды, наносов и химических веществ. Приведены примеры работ Института географии РАН по программе “Оздоровление Волги” в области моделирования диффузного загрязнения в бассейне Чебоксарского водохранилища.

Об авторах

С. В. Ясинский
Институт географии РАН
Россия

Москва



Е. А. Кашутина
Институт географии РАН
Россия

Москва



М. В. Сидорова
Институт географии РАН
Россия

Москва



Список литературы

1. Бобровицкая Н.Н. Исследование и расчет смыва почвы со склонов // Сб. работ по гидрол. Л.: Гидрометеоиздат, 1977. № 12. С. 93–99.

2. Болгов М.В., Голубаш Т.Ю., Лазарева Е.В., Ривар Ж. Моделирование режима поверхностных вод исторической части Ростова Великого // Геоэкология, инженерная геология, гидрогеология, геокриология. 2003. № 6. С. 508–518.

3. Болгов М.В., Завьялова Е.В., Зайцева А.В., Осипова Н.В. Оценка диффузного стока с урбанизированных территорий в бассейне р. Волги (на примере г. Ростова) // Водные ресурсы. 2020. Т. 47. № 5. С. 483– 492.

4. Борисов Д.C. Bentley Systems – моделирование и эксплуатация наружных сетей водоснабжения и канализации // Машиностроение. 2009. № 5. С .64–68.

5. Гарцман Б.И., Шамов В.В. Натурные исследования стокоформирования в дальневосточном регионе на основе современных средств наблюдений // Водные ресурсы. 2015. Т. 42. № 6. С. 589–599.

6. Голосов В.Н. Эрозионно-аккумулятивные процессы в верхних звеньях флювиальной сети освоенных равнин умеренного пояса: Автореф. дис. … д-ра геогр. наук. М.: Изд-во МГУ, 2003. 45 с.

7. Гордин И.В., Кирпичникова Н.В. Сравнительная оценка экологической опасности поверхностных стоков с промышленных площадок и городских территорий // Промышленная энергетика. 1993. № 1. С.32–39.

8. Гусев Е.М. Вариант динамико-стохастического моделирования гидрологических процессов // Метеорология и гидрология. 1982. № 8. С. 75–82.

9. Гусев Е.М., Насонова О.Н. Моделирование тепло-и влагообмена поверхности суши с атмосферой. М.: Наука, 2010. 328 с.

10. Джамалов Р.Г., Фролова Н.Л., Киреева М.Б., Рец Е.П., Сафронова Т.И., Бугров А.А., Телегина А.А., Телегина Е.А. Современные ресурсы подземных и поверхностных вод европейской части России: формирование, распределение, использование. М.: Геос, 2015. 320 с.

11. Диффузное загрязнение водных объектов: проблемы и решения / науч. рук-ль В.И. Данилов-Данильян. М.: РАН, Ин-т водных проблем РАН, 2020. 512 с.

12. Долгов С.В., Коронкевич Н.И. Гидрологическая ярусность равнинной территории // Изв. РАН. Сер. геогр. 2010. № 1. С. 7–25.

13. Долгов С.В., Швыдкий В.О., Штамм Е.В. Закомерности формирования баланса азота и фосфора на речных водосборах в центральной лесостепи Русской равнины в 1990–2020 гг. // Изв. РАН. Сер. геогр. 2021. Т. 85. № 3. С. 355–367.

14. Дрюпина Е.Ю., Эйрих А.Н., Эйрих С.С., Папина Т.С. Влияние крупных городов на качество речных вод (на примере р. Обь в районе г. Барнаула) // Вода: химия и экология. 2014. № 7. С. 3–9.

15. Жидкин А.П., Голосов В.Н., Добрянский А.С. Оценка применимости цифровых моделей рельефа для моделирования эрозии почвы (на примере малого водосбора в Курской обл.) // Современные проблемы дистанционного зондирования Земли из космоса. 2021. Т. 18. № 5. С. 133–144.

16. Зиновьев А.Т., Папина Т.С., Кудишин А.В., Ловцкая О.В., Дьяченко А.В., Марусин К.В., Носкова Т.В. Экспериментальные исследования и моделирование качества воды для оценки влияния диффузного стока с урбанизированных территорий // Науч. проблемы оздоровления российских рек и пути их решения. М.: Студия Ф1, 2019. С. 359–365.

17. Калюжный И.Л., Павлова К.К. Формирование потерь талого стока. Л.: Гидрометеоиздат, 1981. 160 с.

18. Касимов Н.С., Лычагин М.Ю., Чалов С.Р., Шинкарева Г.Л., Пашкина М.П., Романченко А.О., Промахова Е.В. Бассейновый анализ потоков веществ в системе Селенга–Байкал // Вестн. Моск. ун-та. Сер. 5. География. 2016. № 3. С. 67–81.

19. Китаев Л.М. Гидроэкологическая оценка урбанизированных территорий // Изв. РАН. Сер. геогр. 1995. № 3. С. 81–89.

20. Китаев Л.М. Движение химических соединений в системе “атмосфера–поверхностный сток” в условиях города // Изв. РАН. Сер. геогр. 1993. № 6. С.111–114.

21. Кондратьев С.А. Формирование внешней нагрузки на водоемы: проблемы моделирования. СПб., 2007. 255 с.

22. Кондратьев С.А., Шмакова М.В. Математическое моделирование массопереноса в системе водосбор– водоток–водоем. СПб.: Нестор – История, 2019. 248с.

23. Коронкевич Н.И., Мельник К.С. Трансформация стока под влиянием ландшафтных изменений в бассейне р. Москвы и на территории города Москвы // Водные ресурсы. 2015. Т. 42. № 2. С. 133–143.

24. Куприянов В.В. Гидрологические аспекты урбанизации. Л.: Гидрометеоиздат, 1977. 184 с.

25. Литвин Л.Ф., Голосов В.Н., Добровольская Н.Г., Иванова Н.Н., Кирюхина З.П., Краснов С.Ф. Стационарные исследования эрозии почвы при снеготаянии в Центральном Нечерноземье // Эрозия почв и русловые процессы. Вып. 11 / под ред. Р.С. Чалова. М.: Изд-во МГУ, 1998. С. 57–76.

26. Львович М.И., Чернышев Е.П. Закономерности водного баланса и вещественного обмена в условиях города // Изв. АН СССР. Сер. геогр. 1983. № 3. С. 23–29.

27. Михайлов С.А. Диффузное загрязнение водных экосистем. Методы оценки и математические модели. Барнаул: День, 2000.131 с.

28. Мотовилов Ю.Г., Гельфан А.Н. Модели формирования стока в задачах гидрологии речных бассейнов. М.: РАН, 2018. 300 с.

29. Назаров Н.А. Оценки эрозионного смыва почв и выноса биогенных элементов с поверхностным стоком талых и дождевых вод в речном бассейне // Водные ресурсы. 1996. Т. 23. № 6. С. 645–652.

30. Назаров Н.А., Леонов А.В. Моделирование водного и биогеохимического циклов лесного бассейна в течение года // Водные ресурсы. 1999. Т. 26. № 1. С.53–47.

31. Пространственно-временные закономерности развития современных процессов природно-антропогенной эрозии на Русской равнине / под ред. В.Н.Голосова, О.П. Ермолаева. Казань–М., 2019. 371 с.

32. Рекомендации по расчету систем сбора, отведения и очистки поверхностного стока с селитебных территорий, площадок предприятий и определению условий выпуска его в водные объекты. М.: НИИ ВОДГЕО, 2014. 88 с.

33. Сухановский Ю.П., Прущик А.В. Моделирование водной эрозии почвы // Эрозия Почв / Агенство “Apele Moldovei”, Chişinău: S. n., 2019 (Tipogr. “Lexon-Prim”). 200 p.

34. Сухановский Ю.П., Пискунов А.Н., Санжарова С.И. Компьютерная модель для расчёта среднемноголетних потерь почвы, обусловленных дождевой эрозией и эрозией почв при весеннем снеготаянии. Курск: ВНИИЗиЗПЭ РАСХН, 2009. 50 с.

35. Фащевская Т.Б., Мотовилов Ю.Г., Алгушаева А.В. Гидролого-гидрохимические модели формирования диффузного загрязнения // Диффузное загрязнение водных объектов: Проблемы и решения: Кол. монография под рук. В.И. Данилова-Данильяна. М.: ИВП РАН, 2020а. С. 102–125.

36. Фащевская Т.Б., Полянин В.О., Кирпичникова Н.В. Диффузное загрязнение водных объектов: источники, мониторинг, водоохранные мероприятия. М., 2020б. 171 с.

37. Фролов А.В., Георгиевский В.Ю. Изменения водных ресурсов в условиях потепления климата и их влияние на приток к крупным водохранилищам России // Метеорология и гидрология. 2018. № 6. С. 67–76.

38. Хрисанов Н.И., Осипов Г.К. Управление эвтрофированием водоемов. СПб.: Гидрометеоиздат, 1993. 279 с.

39. Чалов Р.С. Речные наносы в эрозионно-русловых системах: Автореф. дис. … д-ра геогр. наук. М.: Издво МГУ, 2021. 50 с.

40. Черногаева Г.М. Гидрологическая роль урбанизации (на примере г. Москвы) // Вопр. географии. М.: Мысль, 1976. Сб. 102. С. 179–184.

41. Чуян Г.А., Бойченко З.А., Тур О.П. Методические рекомендации по оценке выноса биогенных веществ поверхностным стоком. М.: ВАСХНИЛ, 1985. 32 с.

42. Шмакова М.В. Модель почвенной эрозии. Свидетельство о регистрации программы для ЭВМ 2021662286, 26.07.2021. Заявка № 2021661585 от 26.07.2021.

43. Ясинский С.В. Пространственная неоднородность и водоотдача снежного покрова на склонах водосборов малых рек центральной лесостепи // Малые реки России. М.: МЦ ГО РФ, 1994. С. 207–229.

44. Ясинский С.В., Веницианов Е.В., Кашутина Е.А., Сидорова М.В., Ершова А.А., Макеева И.Н. Вклад микрочастиц в перенос загрязнения реками и подземными водами в крупном городе // Современные проблемы водохранилищ и их водосборов: Тр. VIII Всерос. науч.-практич. конф. с междунар. участием. Пермь, 2021. С. 407–411.

45. Ясинский С.В., Вишневская И.А., Веницианов Е.В. Диффузное загрязнение водных объектов и оценка выноса биогенных элементов при различных сценариях землепользования на водосборе // Водные ресурсы. 2019. Т. 46. № 2. С. 232–244.

46. Ясинский С.В., Гуров Ф.Н., Шилькрот Г.С. Метод оценки выноса биогенных элементов в овражно -балочную и речную сеть малой реки // Изв. РАН. Сер. геогр. 2007. № 4. С.44–53.

47. Ясинский С.В., Гусев Е.М. Динамико-стохастическое моделирование процессов формирования весеннего склонового стока на малых водосборах // Почвоведение. 2003. № 7. С. 847–861.

48. Ясинский С.В., Кашутина Е.А., Сидорова М.В. Результаты и перспективы гидрологических исследований на Курской биосферной станции Института географии РАН // Изв. РАН. Сер. геогр. 2021. Т. 85. №4. С. 529–649.

49. Ясинский С.В., Кашутина Е.А., Сидорова М.В., Нарыков А.Н. Антропогенная нагрузка и влияние водосбора на диффузный сток биогенных элементов в крупный водный объект (на примере водосбора Чебоксарского водохранилища) // Водные ресурсы. 2020. Т. 47. № 5.С.630–648.

50. American Public Works Association. Water Pollution Aspects of Urban Runoff. U.S. Department of Interior, FWPCA (present EPA), Washington D.C. WP-20-15. 1969. 200 p.

51. Arheimer B., Olsson J. Integration and Coupling of Hydrological Models with Water Quality Models: Application in Europe. Swedish Meteorological and Hydrological Institute (SMHI), 2003. 53 p.

52. Avellaneda P., Ballestero T.P., Roseen R.M., Houle J.J. On parameter estimation of urban storm-water runoff model // J. Environ. Engineering. 2009. Vol. 135. P.595–608.

53. Behrendt H., Opitz D. Retention of nutrients in river systems: dependence on specific runoff and hydraulic load // Hydrobiologia. 1999. P. 111–122.

54. Chen J., Adams B.J. Analytical urban storm water quality models based on pollutant buildup and washoff processes // J. of Environ. Engineering. 2006. Vol. 132. P.1314–1330.

55. Gander W. Buildup / Washoff Model for Dissolved Iron in Stormwater Runoff. Univ. of New Orleans, 5-18-2007. 73 p.

56. Gironás J., Roesner L.F., Davis J. Storm water management model. Applications manual. Department of Civil and Environ. Engineering Colorado State Univ., Fort Collins, 2009. 180 p.

57. Li R.M. Water and Sediment Routing from Watersheds / Modeling of Rivers. Willey Int. Publ., 1979. P. 9.1–9.88.

58. Shaw S.B., Stedinger J.R., Walter M.T. Evaluating urban pollutant buildup/wash-off models using a Madison, Wisconsin catchment // J. Environ. Engineering. 2010. Vol. 136). P. 194–203.

59. Sutherland R.C., McCuen R.J. Simulation of Urban and Nonpoint Source Pollution // Wat. Res. Bul. 1978. Vol.14(2). P. 409–428.

60. Terstriep M.L., M.T. Lee, E.P. Mills, A.V. Greene, M. Razeur Rahman. Simulation of urban runoff and pollutant loading from the Greater Lake Calumet area. Illinois State Water Survey Champaign, Illinois, October 1990. 99 p.

61. Wang L., Wei J., Huang Y., Wang G., Maqsood I. Urban nonpoint source pollution buildup and washoff models for simulating storm runoff quality in the Los Angeles County // Environ. Pol. 2011. Vol. 159. P. 1932–1940.

62. Yasinsky S.V., Koronkevich N.I., Kashutina E.A., Sidorova M.V., Narykov A.N. Diffuse biogenic pollution of water bodies in the Volga river basin-example of Cheboksary reservoir basin // Wat. Res. Management: Methods, Appl. and Challenges. 2020. P. 123–152.


Рецензия

Для цитирования:


Ясинский С.В., Кашутина Е.А., Сидорова М.В. Диффузное загрязнение водных объектов равнинных территорий: проблемы оценки. Известия Российской академии наук. Серия географическая. 2023;87(1):115-130. https://doi.org/10.31857/S258755662301017X

For citation:


Yasinsky S.V., Kashutina E.A., Sidorova M.V. The Current State of the Problem of Assessing the Characteristics of Water Bodies Diffuse Pollution in Lowland Watersheds. Izvestiya Rossiiskoi Akademii Nauk. Seriya Geograficheskaya. 2023;87(1):115-130. (In Russ.) https://doi.org/10.31857/S258755662301017X

Просмотров: 774


ISSN 2587-5566 (Print)
ISSN 2658-6975 (Online)