Preview

Pattern Recognition in the Tasks of Landform Mapping

https://doi.org/10.31857/S2587556623010089

Abstract

The article aims to show the modern state of pattern recognition techniques for automatic and semi-automatic geomorphological mapping. There is opinion among the geomorphometrists about the expert rules for traditional landform mapping can be quantitated. The general unsolved tasks of automatic landform mapping are: recognition of origin for morphologically similar Earth’s surface forms; criteria development for transfer from morphological to genetic and age landform’s characteristics; preventive choosing the optimal resolution of the remote sensing data; the choosing and rationale of predictor’s weights in statistical modeling procedures. Some cases of the pattern recognition techniques using in geomorphology and landform mapping are given: generalized linear models; classification trees; random forest; artificial neural networks; and computer vision methods. The overall accuracy of the different models according to planar continuous landform recognition (and recognition of lithology types too) is about 50–70% and more. At the same time, specific landform type’s (craters, volcanic cones and others) recognition can reach 90–100%.

About the Author

S. V. Kharchenko
Moscow State University; Institute of Geography, Russian Academy of Sciences
Russian Federation

Moscow



References

1. Anders N.S., Seijmonsbergen A.C., Bouten W. Segmentation optimization and stratified object-based analysis for semi-automated geomorphological mapping. Remote Sensing Environ., 2011, vol. 115, no. 12, pp.2976– 2985.

2. Atkinson J., Jiskoot H., Massari R., and Murray T. Generalized linear modelling in geomorphology. Earth Surface Processes and Landforms, 1998, no. 23, pp. 1185– 1195. https://doi.org/10.1002/(SICI)1096-9837(199812)23:13%3C1185::AID-ESP928%3E3.0.CO;2-W

3. Ayalew L., Yamagishi H. The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains, Central Japan. Geomorphology, 2005, vol. 65, no. 1–2, pp. 15–31. https://doi.org/10.1016/j.geomorph.2004.06.010

4. Brandmeier M., Chen Y. Lithological classification using multi-sensor data and convolutional neural networks, International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences, 2019. https://doi.org/10.5194/isprs-archives-XLII-2-W1655-2019

5. Breiman L. Random Forests. Machine Learning, 2001, no.45,pp.5–32. https://doi.org/10.1023/A:1010933404324

6. Brown D. G., Lusch D. P., Duda K. A. Supervised classification of types of glaciated landscapes using digital elevation data. Geomorphology, 1998, vol. 21, no. 3–4, pp.233–250. https://doi.org/10.1016/S0169-555X(97)00063-9

7. Cavazzi S., Corstanje R., Mayr T., Hannam J., Fealy R. Are fine resolution digital elevation models always the best choice in digital soil mapping? Geoderma, 2013, vol. 195, pp. 111–121. https://doi.org/10.1016/j.geoderma.2012.11.020

8. Clark C.D., Hughes A.L., Greenwood S.L., Spagnolo M., Ng F.S. Size and shape characteristics of drumlins, derived from a large sample, and associated scaling laws.Quaternary Sci. Rev., 2009, vol. 28, no. 7–8, pp.677–692. https://doi.org/10.1016/j.quascirev.2008.08.035

9. Deng Y., Wilson J., and Sheng J. Effects of variable attribute weights on landform classification. Earth Surface Processes and Landforms, 2006, no. 31, pp. 1452–1462. https://doi.org/10.1002/esp.1401

10. d’Oleire-Oltmanns S., Eisank C., Drăgut L., Blaschke T. An object-based workflow to extract landforms at multiple scales from two distinct data types. IEEE Geoscience Remote Sensing Lett., 2013, vol. 10, no. 4, pp.947–951. https://doi.org/0.1109/LGRS.2013.2254465

11. Ermini L., Catani F., and Casagli N. Artificial natural networks applied to landslide susceptibility assessment. Geomorphology, 2005, vol. 66, pp. 327–343. https://doi.org/10.1016/j.geomorph.2004.09.025

12. Evans I.S. Geomorphometry and landform mapping: Whatis a landform? Geomorphology, 2012, vol. 137, pp.94–106. https://doi.org/0.1016/j.geomorph.2010.09.029

13. Florinsky I.V., Eilers R.G., Manning G.R., Fuller L.G. Prediction of soil properties by digital terrain modeling. Environ. Modelling & Software, 2002, no. 17 (3), pp.295–311. https://doi.org/0.1016/S1364-8152(01)00067-6

14. Florinsky I.V. Digital terrain analysis in soil science and geology. Academic Press, 2016. 506 p.

15. Gavrilov A.A. About the nature of geomorphologic convergence and homology phenomena. Vestn. Mosk. Univ. Ser. 5: Geogr., 2016, no. 4, pp. 3–12. (In Russ.).

16. Geomorfologicheskaya karta Murmanskoi oblasti [Geomorphological Map of the Murmansk oblast (Russia)], by M.K.Grave and L.M. Grave, In Murmansk region atlas. Moscow: GUGK Publ., 1971. 8 p.

17. Kharchenko S.V. Application of harmonic analysis for the quantitative description of Earth surface topography. Geomorfologiya, 2017, no. 2, pp. 14–24. (In Russ.).

18. Kharchenko S.V. New challenges of geomorphometry and automatic morphological classification in geomorphology. Geomorfologiya, 2020, no. 1, pp. 3–21. (In Russ.).

19. Kharchenko S. Automated recognition of the landforms origin for the Kola Peninsula based on morphometric variables. EGU General Assembly 2021, online, 19–30 Apr 2021, EGU21-15564. https://doi.org/10.5194/egusphere-egu21-15564

20. Krumbein W.C., Graybill F.A. Statisticheskie modeli v geologii [Statistical Models in Geology]. Moscow: Mir Publ., 1969. 400 p.

21. Lastochkin A.N., Zhirov A.I., Boltramovich S.F. Systemmorphological approach: Another look at morphology research and geomorphological mapping. Geomorphology, 2018, vol. 303, pp. 486–503. https://doi.org/10.1016/J.GEOMORPH.2017.10.022

22. Lastochkin A.N. Morfodinamicheskii analiz [Morphodynamical Analysis]. Leningrad: Nedra Publ., 1987. 256 p.

23. Leverington D., Duguay C. A neural network method to determine the presence or absence of permafrost near Mayo, Yukon Territory, Canada. Permafrost and Periglacial Processes, 1997, no. 8, pp. 205–215. https://doi.org/10.1002/(SICI)1099-1530(199732)8:23.0.CO;2-5

24. Li W., Hsu C.Y. Automated terrain feature identification from remote sensing imagery: a deep learning approach. Int. J. Geogr. Information Sci., 2020, no.34(4), pp. 637–660. https://doi.org/10.1080/13658816.2018.1542697

25. Link A.J. A physic-chemical and textural study of carbonate sedimentation in a lagoonal environment. Evanston, IL: Northwestern University, 1964.

26. Lobanov V.V. Once more on the “elementary morphological unit,” its content and methods of its identification. Geomorfologiya, 1988, no. 4, pp. 29–34. (In Russ.).

27. Lopatin D.V. Polymorphism in geomorphology. Geomorfologiya, 2007, no. 3, pp. 22–23. (In Russ.).

28. Luoto M., Hjort J. Evaluation of current statistical approaches for predictive geomorphological mapping. Geomorphology, 2005, no. 67, pp. 299–315. https://doi.org/10.1016/j.geomorph.2004.10.006

29. MacMillan R.A., Pettapiece W.W., Nolan S.C., and Goddard T.W. A generic procedure for automatically segmenting landforms into landform elements using DEMs, heuristic rules and fuzzy logic. Fuzzy Sets.Systems, 2000, no. 113, pp. 81–109. https://doi.org/10.1016/S0165-0114(99)00014-7

30. MacMillan R.A., Shary P.A. Landforms and landform elements in geomorphometry. In Geomorphometry: Concepts, Software, Applications. Developments in soil science – 33. Hengl T., Reuter H.I., Eds. 2009, pp. 227–254. https://doi.org/10.1016/S0166-2481(08)00009-3

31. MacMillan R.A., Pettapiece W.W. Alberta Landforms: Quantitative morphometric descriptions and classification of typical Alberta landforms. Technical Bulletin No. 2000-2E. Research Branch, Agriculture and Agri-Food Canada, Semiarid Prairie. Agricultural Research Centre, Swift Current, SK, 2000.

32. Marmion M., Hjort J., Thuiller W., Luoto M. A comparison of predictive methods in modelling the distribution of periglacial landforms in Finnish Lapland. Earth Surface Processes, Landforms, 2008, no. 33, pp. 2241– 2254. https://doi.org/0.1002/esp.1695

33. Miska L. and Jan H. Evaluation of current statistical approaches for predictive geomorphological mapping. Geomorphology, 2005, vol. 67, no. 3–4, pp. 299–315. https://doi.org/10.1016/j.geomorph.2004.10.006

34. Pennock D.J., Zebarth B.J., De Jong E. Landform classification and soil distribution in hummocky terrain, Saskatchewan, Canada. Geoderma, 1987, vol. 40, no. 3–4, pp. 297–315. https://doi.org/10.1016/0016-7061(87)90040-1

35. Rashid I., Romshoo S.A., Hajam J.A., Abdullah T. A semiautomated approach for mapping geomorphology in mountainous terrain, Ferozpora watershed (Kashmir Himalaya). J. Geological Society India, 2016, vol. 88, no. 2, pp. 206–212. https://doi.org/10.1007/s12594-016-0479-5

36. Shary P.A., Sharaya L.S., and Mitusov A.V. Fundamental quantitative methods of land surface analysis. Geoderma, 2002, vol. 107, no. 1–2, pp. 1–32. https://doi.org/10.1016/S0016-7061(01)00136-7

37. Smith M.J. and Clark C.D. Methods for the visualization of digital elevation models for landform mapping. Earth Surface Processes, Landforms, 2005, vol. 30, no. 7, pp.885–900. https://doi.org/10.1002/esp.1210

38. Sutfin N.A., Shaw J.R., Wohl E.E., and Cooper D.J. A geomorphic classification of ephemeral channels in a mountainous, arid region, southwestern Arizona, USA. Geomorphology, 2014, no. 221, pp. 164–175. https://doi.org/10.1016/j.geomorph.2014.06.005

39. Serebryanny L.R., Chuklenkova I.N. Density of lakes as an age indicator of glacigenetic morphosculpture: an application of morphometrical analysis in the north-west areas of the Russian Plain. Geomorfologiya, 1973, no. 4, pp. 79–85. (In Russ.).

40. Solonenko V.P. Seismogenetic deformations and palaeoseismic method. In Seismicheskoe raionirovanie Vostochnoi Sibiri i ego geologo-geofizicheskie osnovy [Seismic Zoning of the East Siberia and its Geological and Geophysical Basics]. Novosibirsk: Nauka Publ., 1977, pp. 5–47. (In Russ.).

41. Spiridonov A.I. Geomorfologicheskoe kartografirovanie [Geomorphological Mapping]. Moscow: Nedra Publ., 1974. 184 p.

42. Timofeyev D.A. Polymorphism as general attribute of land surface. Geomorfologiya, 2006, no. 2, pp. 3–6. (In Russ.).

43. Timofeev D.A. Elementary morphological units as an object of geomorphological analysis. Geomorfologiya, 1984, no. 1, pp. 19–29. (In Russ.).

44. Veronesi F. and Hurni L. Random Forest with semantic tie points for classifying landforms and creating rigorous shaded relief representations. Geomorphology, 2014, vol.224, pp. 152–160. https://doi.org/0.1016/j.geomorph.2014.07.020

45. Weiss A.D. Topographic positions and landforms analysis (Conference Poster). ESRI International User Conference. San Diego, CA July 9–13, 2001.

46. Zhu Y.M., Lu X.X., Zhou Y. Suspended sediment flux modeling with artificial neural network: An example ofthe Longchuanjiang River in the Upper Yangtze Catchment, China. Geomorphology, 2007, no. 84, pp.111–125. https://doi.org/10.1016/j.geomorph.2006.07.010


Review

For citations:


Kharchenko S.V. Pattern Recognition in the Tasks of Landform Mapping. Izvestiya Rossiiskoi Akademii Nauk. Seriya Geograficheskaya. 2023;87(1):192-206. (In Russ.) https://doi.org/10.31857/S2587556623010089

Views: 278


ISSN 2587-5566 (Print)
ISSN 2658-6975 (Online)